Результаты поиска по запросу «

NovelAI под Stable-Diffusion

»

Запрос:
Создатель поста:
Теги (через запятую):



нейросети Stable diffusion длиннопост NovelAI 

Модель NovelAI под Stable-Diffusion

Там недавно слили исходники NovelAI, на сколько знаю сервис генерит истории по описанию, что то вроде AI Dungeon. Но с 3 октября у них появилась фича генерить и изображения по описанию. Собственно слили и её.

Автор репозитория одной из сборок, AUTOMATIC1111 добавил в свою сборку поддержку работы новых слитых моделей ,его кстати забанили в офф. дискорде Stable Diffusion после произошедшего.

Если хотим поиграться с новой моделью, а выдаёт она довольно неплохие результаты, то нам нужно:

1. Установить сборку Stable Diffusion от AUTOMATIC1111 - https://github.com/AUTOMATIC1111/stable-diffusion-webui

2. Качаем модель (у них есть NSFW и SFW версии) и некоторые ещё необходимые вещи из слитых материалов - magnet:?xt=urn:btih:5bde442da86265b670a3e5ea3163afad2c6f8ecc&dn=novelaileak

Name > □ > > > > > > > > > > □ □ □ □ □ novelaileak github stableckpt Q animefull-final-pruned □ animefull-latest □ animefull-prevgood □ animesfw-final-pruned □ animesfw-latest □ animesfw-prevgood □ extra-sd-prune Q modules O vector_adjust Q animevae.pt □ clean.py workspace

3. Переименуйте model.ckpt, что лежит внутри animefull-final-pruned в любоеназвание.ckpt. например в novelai.ckpt, теперь переименуем animevae.pt в название которое мы дали предыдущему файлу и добавляем к нему .vae.pt к примеру в novelai.vae.pt... Теперь заходим директорию \stable-diffusion-webui\, заходим в папку models и создаём там папку с именем hypernetworks и кидаем в неё файлы aini.pt, anime.pt, anime_2.pt и т.д из папки modules, что мы скачивали. Теперь в папку \models\Stable-diffusion\ с основными моделями что мы используем, переносим ранее переименованый файл novelai.ckpt и файл novelai.vae.pt

4. Запускаем Stable Diffusion и переходим в настройки, ищем раздел "Stable Diffusion" и включаем нужную модель и finetune hypernetwork

outputs/extras-i mages Output directory for grids; if empty, defaults to two directories below Output directory for txt2img grids outputs/txt2img-grids Output directory for img2img grids outputs/img2img-grids Directory for saving images using the Save button log/images System VRAM usage

5. Готово, можем работать с новой моделью.

NovelAI использует CFG:11 и негативные промты: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, поэтому если хотите результаты похожие на те, что генерит оригинальная, то используйте эти параметры.

В некоторых промптах взятых напрямую из NovelAI может встречаться синтаксис {}. Он предназначен только для официального сервиса NovelAI. Так же усиливает акцент, как и (), но акцентирование увеличивается только в 1,05 раза вместо 1.1 с (). Поэтому если прям точь в точь повторить результат с понравившегося промпта, что увидели в интернетиках, то используем (слово:1.05) или видим {{}}, то используем (слово:1.1025)... А лучше почитайте https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features для понимания всяких тонких фишек.

Ну надеюсь всё правильно описал расписал. Если есть вопросы спрашивайте, если они в рамках понимания моего разума, то отвечу. Ниже приложу пару примеров изображений и промптов к ним, которые способна выдать модель. К слову через эту модель лучше генерить всякие анимешные арты ибо они там получаются лучше всего.

Мои:

((masterpiece)), painting of a ((Mandalorian)) bounty hunter, Star wars, Tatooine, space, stars, art by John J. Park
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
Steps: 150, Sampler: Euler, CFG scale: 11, Seed: 3998559443, Size: 512x704, Model hash: 925997e9

нейросети,Stable diffusion,длиннопост,NovelAI

((masterpiece)), girl,red dress,short hair,summer, twintails, black hair,
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
Steps: 150, Sampler: Euler, CFG scale: 11, Seed: 3013799092, Size: 512x704, Model hash: 925997e9

нейросети,Stable diffusion,длиннопост,NovelAI

Из Discord'a NovelAI:

copic, thick outlines, {{mohawk, shaved sides}}, 1girl, {vibrant}, deep shadows, deep space, {{80s, scifi, movie poster}}, skin tight spacesuit, jumpsuit, {power armor}, {{small breasts}}, closeup, detailed eyes, torso, headshot

нейросети,Stable diffusion,длиннопост,NovelAI

{{BEST QUALITY}}, {{MASTERPIECE}}, {{HIGH RES}}, {{CINEMATIC LIGHTING}}, {{DETAILED}}, {{TELEPHOTO LENS}}, beautiful hd background, high detailed background, {realistic shadows}, HD shadows, {{{midjourney}}}, tarte (hodarake), Anor Lando, avataart, Andy Livy, by dark album, god teir background art, realistic, realistic portrait, masterpiece portrait, {{{{{{MASTERPIECE}}}}}}, sharp, photo realistic, background focus, {{{{{background only}}}}}, futuristic city, future, advanced technology, neon lights, holograms, flying ships, buildings metalic silver , advanced civilization, year 5096 , science fiction, sci-fi, futuristic dome, matrix

нейросети,Stable diffusion,длиннопост,NovelAI

{white hair}, {very long hair}, gloves, black yellow coat, bandaged wrist, torn clothes, {{black}} eyeshadow, black and white eyes, earrings, {{floating crown}}, {star halo}, detached wings, {{masterpiece}}, {1girl}, black smear on right side of face, space background, {goddess}, {standing on a white platform}, {star symbol on clothes}, star earrings, {{medium}} breasts, bandaged torso, patterns on eye pupils, long majestic black yellow coat, chain earrings, makeup, large black and yellow coat, inside a cathedral at night, {detailed large crown}, character focus, floating stars, presenting a menger cube, magic cubes on background, dark magic, serious, {divine}, {{teenage}}, mini universe above hand, black cubes on the background, supernova on the background, decorated hair, covered body, {{{black background}}}, light above head, spirals on background, fractal patterns, {{dirty face}}, bandaged arms, fractal background

нейросети,Stable diffusion,длиннопост,NovelAI

Развернуть

Anime фэндомы StableDiffusion нейронные сети nun NovelAI EndlessGenocide Anime Unsorted 

Развернуть

нейромазня нейронные сети Stable diffusion кукла NovelAI 

Кукла от NovelAI

нейромазня,нейронные сети,Stable diffusion,кукла,NovelAI
Развернуть
Комментарии 1 22.Nov.202208:43 ссылка -4.1

Stable diffusion нейросети NovelAI пидоры помогите 

Уважаемые меньшинства, помогите решить проблему.Решил приобщиться к нейротяночкам по этой инструкции, при запуске выдает ошибку. Чего только не делал. Даже анаконду ставил и пытался через неё отдельно этот torch установить, но ничего не выходитю

1
m C:\WINDOWS\system32\cmd.exe	-	□ X
venv ”C:\UsGrs\mnocard\source\repos\stablG-diffusion-wGbui\vGnv\Scripts\Python.gxg"
Python 3.11.0 (main, Oct 24 2022, 18:26:48) [MSC v.1933 64 bit (AMD64)]
Commit hash: 30blbcc64G67ad50c5d3af3a6fGlbdlG9553f34G Installing torch and torchvision TracGback
Развернуть

Нейросетевые Барышни арт барышня art Stable diffusion нейронные сети нейромазня NovelAI 

Привет реакторчане, впервые публикую здесь что-то.

В первый день, когда скачал и установил novelai, просто баловался, но на второй решил все же почитать о Stable Diffusion, и как правильно генерить. Так и получилось вот это.

Нейросетевые Барышни,арт барышня,арт девушка, art барышня, art girl,art,арт,Stable diffusion,нейронные сети,нейромазня,NovelAI

Развернуть
Комментарии 6 04.Dec.202216:53 ссылка 32.4

нейросети нейромазня Stable diffusion NovelAI DreamBooth длиннопост 

Тренируем модели через DreamBooth на конкретные образы.

Здравствуйте мои любители нейронного колдунства и прочих искуственно интелектуальных утех. Сегодня мы научимся тренировать уже готовые модели на образы которые мы хотим. Локально на нашем ПК без всяких Google Colab и Runpod.

Если я где то накосячил, поправьте в коментариях.

ДИСКЛЕЙМЕР! БУДЕТ ОЧЕНЬ МНОГО ТЕКСТА. Этот способ тренировки через DreamBooth подразумевает, что у вас в гробу установлена карточка (Nvidia скорее всего только поддерживается) с минимум 8-10 ГБ видеопамяти. Тренировка сетки уже куда более ресурсожрущий процесс, чем просто генерация картиночек. Ранее DreamBooth требовал минимум 24ГБ памяти. Так что пока я нашёл нужные материалы, проверил их и понял, как с этим работать, прошла не одна неделя... Стояла бы у меня 3090, то этот гайд вышел бы ещё в середине октября. но если всё же хочется побаловаться, то можно воспользоваться облачными google colab и runpod. Но я так же затрону гиперсети (Hypernetworks), результаты с ними куда менее презентабельные чем через dreambooth, но можно запустить на карточках попроще. Если вы всё же железо-бетонно готовы следовать дальше, прошу.

И так, продолжим. DreamBooth модель можно натренировать на свою рожу, свою собаку, любимую табуретку, или какого нибудь персонажа.

В данном посте я буду работать на модели NAI (NovelAI я буду сокращать в дальнейшем) ибо буду тренить на нашу Реактор-тян. Если хотите сделать своё лицо или, что то из нашего бренного мира то подойдёт обычная модель Stable Diffusion 1.4

В конце будет небольшой Q&A и заметки, дабы всю (почти) воду и рассуждения отградить от основной информации.

Я разобью гайд на несколько частей. Тренировка DreamBooth и тренировка Embeddings с Hypernetworks.

DreamBooth:

Знаю, что уже появился спобоб тренить DB (DreamBooth я буду сокращать в дальнейшем) через webui stable diffusion от AUTOMATIC1111 в виде загружаемого плагина, но чёрт, вы хоть видели сколько там настроек? Я устану вам объяснять каждую и вы умрёте от духоты, поэтому я выбрал более дружелюбное, отдельно загружаемое приложение - DreamBooth-gui - https://github.com/smy20011/dreambooth-gui скачиваем и устанавливаем его по инструкции приложеной на Гитхабе, не буду тут расписывать ибо и так много текста.

Запускаем приложение и видим первое, что нас просят сделать, а именно загрузить набор изображений на который мы хотим натренировать модель. Делаем их в разрешении 512x512, где надо фотожопим лишнее.

0 dreambooth-gui
□
X
Pick Image Config Trainer Train,нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Как только залили изображения, я сделал 8шт, переходим на следующую вкладку Confin Trainer, здесь мы зададим нужные параметры и настройки. Рассуждения о зависимости некоторых параметров от других, пока где-то на уровне теории заговоров, но основные зависимости я объясню дальше.

И так, для начала выбираем модель. По умолчанию нам предложит CompVis SD v1.4, который оно подкачает с hugging face. Но сегодня я работаю с NAI поэтому указываю путь до папки с моделью. Сейчас я на версии программы v0.1.8. и она требует, что бы модель была конвертирована из .ckpt в diffusers. Вот ссылка на мою конвернутую модель NAI - https://drive.google.com/file/d/1BnZyUb9C5wjz7Lcp1Dn8JidZLQ4taQEy/view?usp=share_link

Далее указываем Instance prompt, это должно быть уникальное слово которого не должна знать модель, то есть никаких boy, girl, и имён персонажей которых может знать модель. В дальшейшем это название мы будем указывать среди промптов, что бы модель на это тригеррилась и генерила уже с учётом натренированности этого концепта.

Class prompt указываем ёмко, кратно, что мы тренируем. У нас один женский персонаж и раз уж модель NAI тренилась на датасете danbooru, то я и укажу женский тег от туда, а именно 1girl.

Training Steps я выставлю 1000, а Learning Rate 5e-6, но это крайне запутанные настройки, о них я побольше размусолю ниже в разделе с водой и по ходу текста.

Аргументы не трогаю.

0 dreambooth-gui
□
X
Pick Image Config Trainer Train Run dreambooth on NVIDIA GeForce RTX 3080, 8.65gb free
Model
C:\Users\egorv\dreambooth-gui\models\NAI
Choose Local Model
Name of the base model, (eg, CompVis/stable-diffusion-v1-4)
Instance prompt joyreactorchan
Name of the instance,

Отлично, переходим к разделу тренировки, здесь нас попросит вставить наш Hugging Face Token. По идеи это нужно только если мы качаем модель SDv1.4 или прочую с Hugging Face, а у нас она локально на пк уже стоит, но всё равно просит, поэтому регаемся там и идём в настройках раздел с токенами https://huggingface.co/settings/tokens и создаём токен на WRITE и вставляем его в наше поле. Прописываем папку куда будут выгружаться все файлы после и проверяем, что бы стояла галочка, что бы модель генерилась потом в .ckpt файл в нашей папке вывода.

0 dreambooth-gui
□
X
Pick Image Config Trainer Train Hugging Face Token
Output Dir
C:\Users\egorv\dreambooth-gui\outputs\joyreactor
Select
B Generate model checkpoint (.ckpt file) in the output directory
Training Command
docker run -t —gpus=all

Иии жмём старт! И так теперь запасаемся терпением, можете заварить чай, помыться, выйти на улицу, потрогать траву, сходить в магазин и т.д, ибо процесс первого запуска НЕВЕРОЯТНО ДОЛГИЙ. Серьёзно, я сам в первый раз думал, что у меня, что то зависло. Минут 30 только оно подгружало нужные файлы, и убедитесь, что у вас на диске есть ещё место, ибо пару десятков ГБ на нём, этот процесс забьёт. Если увидите, что ошибок не вылезно, в папке \AppData\Roaming\smy20011.dreambooth были сгенерены картинки референсы по классовому промпту и вы не словили ошибку о нехватке видеопамяти (будет у многих вангую) то поздравляю, у вас пойдёт тренировка, и вы увидите, как у вас будут лететь надписи Steps ****% |▋▋▋▇| ***/1000 [**:** < 00:00, *.**s/it, loss=0.***,lr=5e-6]

На тренировку модели в 1000 шагов моей RTX 3080 потребовалось почти пол часа. Чтож, когда увидим сообщение о том, что всё готово, заходим в папку вывода, и переименовываем как хотим и переносим .ckpt файл в папку с моделями нашего stable diffusion.

Training Command
Finished!
"jii\datasets\joyreac
:tor:/instance •
S
s s s
Steps: 100%' Steps: 100%|| Steps: 100%|| Steps: 100%|| Steps: 100%||
Training finished, check
C:\Users\egorv\dreambooth-gui\outputs\joyreactor for model output.
OK
/it, loss=0.257, lr=5e-6] /it, loss=0.257,

Запустите SD, загрузите модель. Проверьте результаты, всё ли выглядит так, как должно, у меня получилось... приемлимо...

joyreactorchan, 1girl, orange hair, medium hair, antenna hair, blue eyes, freckles, foxy ears, white bardot top, orange overalls, orange collar with bell, gold hairpin, gold buckles
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, furry
Steps: 60, Sampler: Euler, CFG scale: 11, Seed: 3985740085, Size: 960x960, Model hash: e02601f3, Model: joyreactor, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0

Модель DreamBooth

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Чистая NAI

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Ну вроде неплохо. Но можно лучше.

У меня выходили и более презентабельные модели, чего стоит модель с моей рожей, что генерит меня с шансом 50%, а в остальных случаях Иисуса либо Джареда Лето либо двухголовую ебаку...

Вот пример с DB, а вот чистая NAI. Ну думаю, я бы мог вопроизвести похожий результат и без DB, но потребовалось бы куда больше промптов и попыток. Тем не менее, DB приближает качество и иполнение результатов, к тем, на какие мы тренировали, поэтому если тренируете на лицо, то оно даст намного чёткие и предсказуемые результаты, чем просто по запросу "лохматый бородатый мужик"

Если хотим закрепить результат и возможно улучшить, то рекомендую потренить и Textual Inversion - https://huggingface.co/docs/diffusers/training/text_inversion Это крошечная часть нейросети обученая на наборе картинок. требует поменьше ресурсов для тренировки, чем DreamBooth. С её помощью удобно воспроизодить стили и какие то объекты. Я потреню на том же датасете картинок, что и DB.

Тренировка Embeddings (Textual Inversion)

Идём в раздел SD webui который называется Train, и в первом подразделе Create embedding начинаем заполнять пункты.

Name - просто имя файла и в дальшейшем мы будем писать это название среди промптов, что бы задействовать нужный embedding. Поэтому я использую название, то же, что и у инстанс промпта в DB, что бы тригеррить их обоих разом.

В Initilization text вписываем описание персонажа, я описал его более подробно, ибо на реактор-тян оно почему то ловит затуп и генерит совсем шлак потом. А так обычно то же, что и class prompt в DB. Число векторов на токен я выставил 8, хотя чем больше это число, то тем больше примеров картинок лучше подготовить, но остановлюсь на этом.

Stable Diffusion checkpoint JoyReactor.ckpt [e02601f3]
txt2img img2img Extras PNG Info Checkpoint Merger Train Create aesthetic embedding Settings Extensions See wiki for detailed explanation.
Create embedding Create hypernetwork Preprocess images Train,нейросети,нейромазня,Stable

Теперь идём в Preprocess images, вводим путь до папки с изображениями и туда, куда их выгрузит. Ставим галочку на Use deepbooru for caption, не уверен, будет ли у вас эта функция, если нету или не работает, поставьте в аргументах запуска SD аргумент "--deepdanbooru", и тогда точно всё будет ок. Эта функция создаст текстовое описание для каждого изображения в формате тегов с danbooru, так сетка лучше обучится. Если трените не на NAI моделе, а что то реалистичное, то советую использовать, Use BLIP for caption, создаст промпты как если бы их писали для работы с обычной моделью SD 1.4... Так же уделите время и вручную проверьте КАЖДЫЙ созданый текстовый документ, и сверьте его с картинкой, постарайтесь удалить ненужные промпты или добавить, то что считаете нужно, не всегда оно создаёт описание корректно. Да это муторно, но стоит без этого может натренить сетку не на то, что мы желаем.

See wiki for detailed explanation.
Create embedding Create hypernetwork Preprocess images Train
C:\Users\egorv\stable-diffusion-webui\training\joyreactor
Preprocess,нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

OOOOO-O-Byyfgs.p 00000-0- Byyfgs.t
00001-0-Screens	00001-0-Screens	00002-0-Screens
hot_1.png	hot_1.txt	hot_2.png
00002-0-Screens hot_2.txt
00003-0-Screens hot_3.png
00003-0-Screens hot_3.txt
00004-0-Screens	00004-0-Screens 00005-0-sdfdf.pn	00005-0-sdfdf.txt	00006-0-sdfsh3v 00006-0-sdfsh3v

И последний подпункт Train. Тут внимательно, можно ошибиться с пунктами и кнопками. Я помечу на скрине те пункты, которые мы трогаем, остальные игнорьте.

В embeddings выбираем наш созданый, в dataset directory указываем путь, куда мы выгружали изображения уже с описаниями, в prompt template file указываем путь до файла шаблона по которым оно будет трениться, я создал свой файлик, в котором внутри написано только [filewords] , прямо с квадратными скобками, это будет задействовать описания изображений которые мы создали раньше.

Save an image to log и save a cope of embedding, это параметры отвечающие за тестовое создание изображения на данном этапе тренировки и сохранинии текущего результата на момент шагов. Я генерирую изображение каждые 500 шагов и сохраняю прогресс каждые 1000, да бы проверить не произошла ли перетренировка модели, да бывыет и такое, её можно перетренировать, об этом после гайда...

И надеюсь вы не подумали, что я пропустил пункт с Embedding Learning Rate и Max Steps, то нет. Вот тут та же шляпа, что и раньше, и надо подбирать соотношения. В этот раз будем создавать поэтапно.

Для начала мы проведём тренировку на 200 шагов и Learning Rate 0.02, после увеличим число шагов до 1000 и уменьшим LR до 0.01, потом 2000 шагов и LR 0,005, 3000 и 0.002, 4000 - 0.0005 и в конце выставим 20000 шагов и скорость обучения на 0.00005. Чё страшно, запутались? Кароче, шляпа в том, что бы сетка не переобучилась, так мы её постепенно полируем, подробнее об этом после гайда в разделе с разными мыслями.

Stable Diffusion checkpoint JoyReactor.ckpt [e02601f3]
txt2img img2img Extras PNG Info Checkpoint Merger Train Create aesthetic embedding Settings Extensions See wiki for detailed explanation.
r	\
Create embedding Create hypernetwork Preprocess images Train
Train an embedding or Hypernetwork;

Вот выставили 200 шагов и 0.02 скорость, она прогонит по этим параметрам и закончит, не закрываем ничего, меняем параметры на следующие по списку, 1000 шагов и скорость 0.01 и опять жмём Train Embedding и опять идёт тренировка уже дальше с новыми данными. И т.д до конца. 20000 шагов золотая середина как по мне. У меня на это уходит около полутора часа, побольше, чем на тренировку DreamBooth, результат не будет сверх разиться, но будет чуть более в нужном нам направлении.

Loss: 0.0780509 Step: 15526
Last prompt: lgirl, orange hair, medium hair, antenna hair, blue eyes, freckles, foxy ears, white bardot top, orange overalls, orange collar with bell, gold hairpin, gold buckles, smoking, :d Last saved embedding:

Training finished at 200 steps.
Embedding saved to C:\Users\egorv\stable-diffusion-webui\embeddings\joyreactorchan.pt,нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

[Epoch 24: 800/800]loss : 0.096Б130: 100%
16000/16000 [1:18:42<00:00,	3.39it/s],нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Вот примеры, того что по итогу вышло.

masterpiece, best quality, joyreactorchan, 1girl, orange hair, medium hair, antenna hair, blue eyes, freckles, foxy ears, white bardot top, orange overalls, orange collar with bell, gold hairpin, gold buckles, solo, standing, upper body
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, furry, portrait
Steps: 60, Sampler: Euler, CFG scale: 11, Seed: 370310831, Size: 768x768, Model hash: e02601f3, Model: joyreactor, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0

DreamBooth + Embedding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

DreamBooth без Embeding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

И без DreamBooth и без Embedding на чистом NAI

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Ну Embedding иногда подтягивает, некоторые результаты, иногда может быть лишним. Довольно ситуативная и спорная вещь, но вот на DreamBooth сразу узнаётся Реактор-тян, нежели на обычной NAI с теми же хорошо подобранными промптами.

И да, знаю, что вероятно будут просить уже готовую модель, так что держите ссылки на модель на Реактор-тян и готовый Embedding:

https://drive.google.com/file/d/1s2z1grZvNdVxkw5uHJQIWKecgeV39tWp/view?usp=sharing

https://drive.google.com/file/d/1pft2NvHGi5xaJ61LctRc2Lf4aixHke0Z/view?usp=sharing

Лучше пусть кто то забэкапит, а то мало ли я буду облако чистить.

Hypernetworks

Если не получилось натренить DreamBooth, то попробуйте гиперсети. Тоже прикольные результаты можно получить, если постараться.

Тренить гиперсеть на реактор-тян я не буду, поэтому опишу как делал ранее с другими вещами. Если желаете ознакомиться с материалом, по которому я и сам тренировался, прошу - https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/2670

Процесс тренировки схож с тренировкой embeddings.

Так же в заходим в раздел Train, и уже в подпункт Create Hypernetwork. Имя гиперсети пишем какое хотим, без разницы, модули 768 320 640 1280 оставляем как есть.

Теперь тут свои завертоны пойдут, просят ввести структуру слоёв гиперсети:

Для широких гиперсетей: 1, 3 ,1 или 1, 4 ,1

Для глубоких гиперсетей: 1, 1.5, 1.5, 1 или 1, 1.5, 1.5, 1.5, 1 или 1, 2, 2, 1

Широкие: подходят для запоминания новых вещей, таких как конкретное животное, человек или объект.

Глубокие: подходят для обобщения вещей, таких как стили.

Поэтому исходите из этого, для реактор-тян я бы выбрал 1, 3, 1

Следующий пункт, select activation function of hypernetwork:

Для аниме (NAI, Waifu и т. д.): Selu, Gelu, mish

Для фотографий: Relu, swish, mish,leakyrelu, rrelu

Теперь Select Layer weights initialization. Для аниме ставим xaviernormal. Если фото и т.д то по умолчанию normal.

Остальные галочки ниже необязательны.

txt2img img2img Extras PNG Info Checkpoint Merger See wiki for detailed explanation.
Train
Create aesthetic embedding Settings Extensions
Create embedding Create hypernetwork Preprocess images Train Name
Modules
✓ 768	✓ 320	✓ 640	✓ 1280
Enter hypernetwork layer structure
1,2,1
Select

Потом так же подготавливаем изображения как и с embeddings, это я не буду повторять и переходим сразу в Train.

Выбираем так же как и при тренировке embedding путь до шаблона, папку с датасетом из наших картинок с текстом, сохранение результатов и картинок.

Теперь выбираем нужную гиперсеть в выпадающем списке Hypernetworks. Изменять будем раздел Hypernetwork Learning rate, а не Embedding Learning rate, как раньше и жать будем на Train Hypernetwork, а не Train Embedding.

Create embedding Create hypernetwork Preprocess images Train
Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]
Batch size 1
Dataset directory
Path to directory with input images Log directory textualjnversion Prompt template file

Вот примеры хороших соотношений последовательностей Steps к LR:

Для обычных людей - 0.00005:100, 0.000005:1500, 0.0000005:10000, 0.00000005:20000

А вот для извращенцев - 0.00005:100, 0.000005:1500, 0.0000005:2000, 0.00005:2100, 0.0000005:3000, 0.00005:3100, 0.0000005:4000, 0.00005:4100, 0.0000005:5000, 0.00005:5100, 0.0000005:6000, 0.00005:6100, 0.0000005:7000, 0.00005:7100, 0.0000005:8000, 0.00005:8100, 0.0000005:9000, 0.00005:9100, 0.0000005:10000, 0.000005:10100, 0.00000005:11000, 0.000005:11100, 0.00000005:12000, 0.000005:12100, 0.00000005:13000, 0.000005:13100, 0.00000005:14000, 0.000005:14100, 0.00000005:15000, 0.000005:15100, 0.00000005:16000, 0.000005:16100, 0.00000005:17000, 0.000005:17100, 0.00000005:18000, 0.000005:18100, 0.00000005:19000, 0.000005:19100, 0.00000005:20000. Этот вариант выглядит монструозно, но я его тестировал лично, и довольно хорошо работает при условии, что вы подобрали хорошие примеры изображений и текстовые описания к ним.

И так же поэтапно треним как и embedding... ВСЁ!

ВОДА и Q&A!!!

Ахренеть, как буд-то по новой пишу дипломную, но только с надеждой в том, что кому то это поможет и он воспользуется этим материалом, либо же просто покекает с того, что я потратил на это несколько недель, начиная от поиска нормального способа запуска DreamBooth и заканчивая десятком часов на попытки разобраться в особенностях и нюансах, ну и этот текст я пишу уже где то часов 6 нонстоп, набралось уже 2 c половиной тысячи слов! серьёзно, надо хоть воды налить себе, ха отличная шутка.

1)Q: Почему так сложно?

A: А кому легко?

2)Q: Можно ли было уместить это в 5 абзацев на 500 слов в общем?

A: Не знаю, пишу как умею, кто умер от духоты и захлебнулся в воде, простите)

3)Q: У меня видеокарта ******, у меня заработает?

A: Не знаю. Скорее всего на AMD, вообще никак. Если у вас есть в карте тонна видеопамяти, то должно. Либо попробуйте запустить, через Google Colab, Runpod и прочие облака с арендой видеокарт и работы с их мощностями. Я НЕ БУДУ ПИСАТЬ ГАЙД ПО КОЛАБУ, НЕЕЕЕТ!

4)Q: Не надоело ли писать вопросы и ответы?

A: Да, чёт устал, задавайте в комментариях, отвечу как смогу.

Теперь ВОДА и прочие размусоливония которых, я старался избегать в основной части гайда.

Подойдите к этапу подбора изображений для тренировки максимально отвественно и серьёзно, ибо от того какие изображения вы скормите, во многом будет зависить результат. Так же качество > колличество, будет хорошо если вы задействуете 10 годных примеров, нежели 30 посредственных. Я стараюсь выдерживать единый стиль изображений, если одна картинка будет от карандаша, другая 3D CGI, а третья в стиле Пикассо, то выйдет так себе и выйдет мешанина из этого всего. Если тренирую персонажа, то стараюсь делать акцент на лице, тело можно будет и промптами задать, но вот получить нужное лицо сложно, ну за этим и нужен DB.

Во многом из за конвертации .ckpt в diffusers я неделю ломал голову, ибо обычным скриптом предназначеным для этого у меня не выходило, но как видите удалось, а именно при помощи гуглколаба от TheLastBen. Необходимо было залить модель в колаб, прогнать через его скрипт, и выгрузить результат себе на гугл диск. В скорой версии Dreambooth gui v.0.1.9. появится возможность использовать .ckpt и программа сама будет его конвертировать. 

Вот теперь мы пришли к одной из самых важных вещей, во круг которых строятся различные догадки и теории заговоров... А именно зависимость количества шагов тренировки (Training Steps) и скорости обучения (Learning Rate или LR).

Число шагов обучения ~= кол.во изображений * 100, у меня 8 изображений, поэтому оптимально было бы 800, но я округлил до 1000, потому что хочу. По скорости обучения ещё сложнее, но держим в голове несколько вещей, больше steps = меньше LR, и наоборот. Так же главное не перетренировать модель. Представьте этот процесс как работа по дереву. У вас есть бревно и вы хотите обтесать из него фигуру. Поставите слишком высокий LD и срежете слишком много кусков и модель будет перетренирована и бракована. А поставите если поставите слишком низкий LR, то представьте, как мелким скальпелем обтёсываете огромное бревно дуба до размера фигурки.

Пока тестил эту байду, знакомый кидал идеи на чё попробовать тренить, приложу ещё примеры DB и embedding под персонажа Макимы из Человека Бензопилы (Аниме), но её я уже делал на немного допилиной модели - Anything-V3.0, про неё уже сделали пост - https://joyreactor.cc/post/5385144

masterpiece, best quality, makimacmdb, makima \(chainsaw man\), 1girl, medium hair, pink hair, sidelocks, bangs, braid, braided ponytail, eyebrows visible through hair, orange eyes, ringed eyes, breasts, medium breasts, shirt, collared shirt, shirt tucked in, black pants, suit, business suit, formal jacket, long sleeves, necktie, black necktie, light smile, expressionless, looking at viewer, solo, gradient background, cinematic, filmic, telephoto, depth of field, lens distortion, lens flare, white balance, strobe light, volumetric lighting, dramatic lighting, little haze, ray tracing reflections, detailed, intricate, elegant, realistic
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, ((extra fingers)), ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((bad anatomy)), (((bad proportions))), ((extra limbs)), glitchy, ((extra hands)), ((mangled fingers)), dark skin, hair ornament , troubled eyebrows, big breast, yumemi riamu
Steps: 60, Sampler: Euler, CFG scale: 11, Seed: 1316407258, Size: 896x896, Model hash: e02601f3, Model: makimaANY, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0

DreamBooth + Embedding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

DreamBooth и без Embedding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Без DreamBooth и без Embedding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Как и писал выше, иногда Embedding лишний, некоторые результаты, лучше без него, некоторые с ним. Сутуативная хреновона, но лучше будет, чем нет.

КОНЕЦ.

Развернуть

Stable diffusion нейросети нейромазня NovelAI art 

Поэкспереминтировал с novelai, SD доообученная под аниме с добавлением таких фишек, как гиперсети. Почитать можете к примеру тут. Вообщем она, когерентнее, чем другие дообученные аниме аналоги и с анатомией все лучше, но в плане стиля немного однообразна. Дообучали ее без имен художников, поэтому стилем через имена управлять трудно, но я попробовал имена тех кто оригинальное SD неплохо знает. По итогу некоторые вещи даже похожи, а какие-то нет, но как минимум можно подобрать себе что-то по вкусу. Плюс оценил влияние гиперсетей. С черными изображениями нужен другой сэмплер.Эйлер иногда так глючит.

None aini anime anime_2 Adrian Smith Alan Lee Albert Lynch Alex Grey w m Иг4 ^ yj я 1 J fi ji il h w /I f 1 В Э9® ^ Æ^JL^ _ _ .. « К./ b 1 *W / л 5 f i ' * l ! mi 1 Í л "1 Ну i L anime_3,Stable diffusion,нейросети,нейромазня,NovelAI,art,арт

Anna Dittmann Anne Stokes Artgerm Arthur Hacker None aini anime anime_2 anime_3 f 1 / vV> 'W ^ ^ í - ' J \ Wi MrYlM \ I UUj^Hà ~ Ær: */W|y I Ki r .V* '1 & f / • —§ \lLktl J Arthur Rackham Audrey Kawasaki A-1 Pictures Bastien Lecouffe-Deharme Bella Kotaki,Stable

None aini anime anime_2 Berthe Morisot Bob Byerley Bob Peak anime_3 Carne Griffiths Catrín Welz-Stein Charlie Bowater CLAMP 1 IM v 4 [. f '»\ AL«J,Stable diffusion,нейросети,нейромазня,NovelAI,art,арт

None aini anime anime_2 anime_3 Clive Barker Craig Davison Dean Cornwell Dorina Costras Drew Struzan Edward Burne-Jones Edward Robert Hughes Eric Wallis Esteban Maroto Flora Borsi Franz Xaver Winterhalter r V, f1 ! \ (i 1 L Tl 7 1 M [\ \\ 1 > ml V Gainax Gaston

None aini anime anime_2 Gustav Klimt Hayao Miyazaki Hirohiko Araki Hitoshi Ariga Howard Chaykin Howard Pyle Hsiao-Ron Cheng Igor Morski Ilya Kuvshinov Ilya Repin Isao Takahata Guo Pei Gustave Moreau :V anime_3,Stable diffusion,нейросети,нейромазня,NovelAI,art,арт

James Tissot Joao Ruas John Musker None aini anime anime_2 Jan Van Eyck Jason Edmiston Jean-Baptiste Monge Jean-Marc Nattier Jeremy Lipking Jessie Willcox Smith John Byrne John William Waterhouse Josephine Wall Jovana Rikalo Jules Bastien-Lepage Junji Ito V \ yLffl Ж Ш

None aini anime anime_2 anime_3 Kate Greenaway Katsuhiro Otomo Ken Kelly Ken Sugimori Kentaro Miura Krenz Cushart Kyoto Animation Leonardo da Vinci у ' 1 11 r i/nm) 1 lift 1 —и -- ЩК Luis Royo Malcolm Liepke Mamoru Hosoda Mamoru Oshil Marco Mazzoni Margaret Keane Mark

None aini anime anime_2 Masashi Kishimoto Michael Cheval Michael Whelan Miho Hirano Moebius Naoko Takeuchi anime_3 Odd Nerdrum P.A. Works Paolo Roversi Patrice Murciano Paul Outerbridge Pete Docter Peter Mohrbacher,Stable diffusion,нейросети,нейромазня,NovelAI,art,арт

None aini anime anime_2 anime_3 Pixar Production I.G Quentin Blake Rafael Albuquerque Ralph Bakshi Ray Caesar Raymond Swanland i WJi A Rene Magritte Richard Corben Rob Liefeld RonWalotsky RossDraws RumikoTakahashi Russ Mills Salvador Dali L 1 | i 1 r /M ¡H i\,Stable

SHAFT Sharaku Shepard Fairey Shoji Kawamori Shotaro Ishinomori Sophie Anderson Studio DEEN None aini anime anime_2 anime_3 \ ' /■ m \ uf , Ä ! ' 'ir f A m ^ >■ A kJ* ■TV I npbm mlv 1 1 1 fr 1 Theo van Rysselberghe Tatsunoko Productions Studio Ghibli Studio Pierrot Sui

None aini anime anime_2 anime_3 Todd McFarlane Toei Animation Tom Bagshaw Trina Robbins Tsutomu Nihei Ufotable Umberto Boccioni Utamaro VictoNgai Vincent van Gogh l ( n V F m à àH Vittorio Matteo Coreos Walt Simonson ... , „ , William-Adolphe Walter Crane Wayne Barlowe

Развернуть

Anime фэндомы KonoSuba Aqua (KonoSuba) Stable diffusion нейросети NovelAI EndlessGenocide Anime Unsorted 

Развернуть
Комментарии 2 31.Aug.202304:46 ссылка 17.2

Anime фэндомы Rem (Re Zero) Re Zero Kara Hajimeru Isekai Seikatsu Stable diffusion нейронные сети NovelAI EndlessGenocide Anime Unsorted 

Развернуть
Комментарии 0 28.Aug.202302:30 ссылка 2.8

furry фэндомы furry art нейросети Stable diffusion NovelAI furry canine 

Пушистые аватарки

furry,фурри,фэндомы,furry art,нейросети,Stable diffusion,NovelAI,furry canine

furry,фурри,фэндомы,furry art,нейросети,Stable diffusion,NovelAI,furry canine

furry,фурри,фэндомы,furry art,нейросети,Stable diffusion,NovelAI,furry canine

furry,фурри,фэндомы,furry art,нейросети,Stable diffusion,NovelAI,furry canine

furry,фурри,фэндомы,furry art,нейросети,Stable diffusion,NovelAI,furry canine

furry,фурри,фэндомы,furry art,нейросети,Stable diffusion,NovelAI,furry canine

furry,фурри,фэндомы,furry art,нейросети,Stable diffusion,NovelAI,furry canine

furry,фурри,фэндомы,furry art,нейросети,Stable diffusion,NovelAI,furry canine

Продолжаю эксперименты. В этот раз через другую нейронку NovelAI попытался сделать портретики. Второй арт чуть больше вышел, я его апскейльнул и чуть подправить детали убрав зернистость (портило стиль минимализма). Так что при желании можно без особых проблем самому с полтысячи до тысячи подгонять почти без потери в качестве, очень удобно.
Развернуть
Комментарии 3 17.Oct.202215:58 ссылка 6.7
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме NovelAI под Stable-Diffusion (+1000 картинок)