Результаты поиска по запросу «

Stable diffusion длиннопост

»

Запрос:
Создатель поста:
Теги (через запятую):



нейронные сети Stable diffusion длиннопост 

Stable Diffusion 3 теперь доступна для скачивания и запуска локально

нейронные сети,Stable diffusion,длиннопост

Генерация по промту: Epic anime artwork of a wizard atop a mountain at night casting a cosmic spell into the dark sky that says "Stable Diffusion 3" made out of colorful energy

Теперь модель можно скачать и запустить локально (пока только Medium-версию). Разработчики пишут, что новая модель лучше понимает текст промта, более реалистичная в плане рук и лиц. А так же лучше запоминает детали на даже на небольших дата сетах. Одна из интересных фитч - генерация надписей.

Еще пишут что она "идеально подходит для работы на стандартных потребительских графических процессорах без снижения производительности". Но тут бы я поспорил, легко переварить 10Gb не каждая видеокарта сможет. На моей машине работает медленнее по сравнению с SDXL.

Скачать саму модель можно с civitai или huggingface. Запустить на данный момент только в comfyui.

Немного погонял локально, промты действительно понимает хорошо. Но модель "недообучена" - качество оставляет желать лучшего. Предыдущие версии тоже от этого страдали, но люди из комьюнити допиливали до вполне не плохих результатов.

Несколько примеров на модели SD3 Medium Incl Clips T5XXLFP8

Сложный промт с положением объектов на картинке указанием цветов (у прошлых моделей возникали проблемы):

Three bottles on a table in a kitchen. Bottles that look like cola. Left bottle is full of blue liquid with the number 1 on it. Middle bottle is full of white liquid with the number 2 on it. Right bottle is full of red liquid with the number 3 on it.

нейронные сети,Stable diffusion,длиннопост

Видно, что модель четко следует промту. Круто!

Попробуем с людьми: 

Forest in the background. Dark theme, sunset, look at at viewer, captured in the late afternoon sunlight. Photo of three 21 year old woman. Left woman is blonde with the number 1 on blue T-shirt. Middle woman is redhead with the number 2 on white T-shirt. Right woman is brown hair with the number 3 on red T-shirt. Wearing shorts

 ' 'Л <*щ: tC Y\ ^ МЦ , ,%f- > / « »®V .}?^■ ' . V » ‘ Y «Л • , г ‘У»7 f\ J¡«V >^|<1Л*П'*01Я^1^^^^Ея1. ájí&jrf * ?&"-Z1QH ¡г а*. "• a^2|^B|Uг> * * ¿jp v .уФ*ы г*Ьп|^НРЦН^&. . "J ль*,нейронные сети,Stable diffusion,длиннопост

Тут пришлось сначала описать лес на фоне, потому что иначе он выглядел как будто прифотошопленным. В остальном модель четко соблюдает номера, цвет футболок и волос. Раньше, без танцев с бубном, четко прописать нескольких разных типажей на одной картинке было почти не реально - детали сливались и получались клоны. А в новой версии достаточно просто описания. 

А что по надписям на картинке? Попробуем:

Neon sign with the text "Ты пидор"

нейронные сети,Stable diffusion,длиннопост

Видимо, русскую кодировку не завезли, но видно что модель старается, попробуем иначе:

Neon sign with the text "You are awesome!"

нейронные сети,Stable diffusion,длиннопост

Попробуем сгенерить котика:

A black cat walking along a street paved with stone.Close-up of a cat's face.

нейронные сети,Stable diffusion,длиннопост

Опять неплохо, хотя пришлось реролить несколько раз, что бы получить более-менее нормальный результат. Модель знает основы анатомии кота, но иногда больше похоже на детский рисунок.

Как на счет аниме?

Illustration anime, cartoon. 1woman, blue eyes, brown hair, dynamic angle, centered, full body photo. Street in the background

нейронные сети,Stable diffusion,длиннопост

Опять пришлось реролить несколько раз. Заметил, что если указывать больше деталей, картинка получается лучше.

Попробуем городской пейзаж:

Urban photography: houses, trees, cars, and peoples. the road goes from the bottom left to the right

PM л «с* l4^:v:v^ >.:;->r^ t^jgr jP, jBgf ж ■ W5p дОДЙ'^с^ «. ЩМч к VT'^Г ‘ 1 т :’•кйк№т1^^и » \ 1 «!* *. j|, ЛД ^ ; >,нейронные сети,Stable diffusion,длиннопост

Осторожно: если долго рассматривать картинку, можно подумать что у тебя инсульт...

Что мы имеем на данный момент? Пока реализм хромает... Не всегда с первого раза выходит что нужно. Лично я ожидал большего. Все те же проблемы с руками и склонностью к "плоскости" перспективы и объектов. 

Но есть ощущение, что модель действительно лучше понимает что от нее хотят. Будем надеется, что дообучение будет по силам сообществу, и мы увидим NSFW версию от авторов Juggernaut или Pony Diffusion.

ЗЫ: надеюсь теги эротики и аниме не нужны.

Развернуть

нейросети Stable diffusion длиннопост NovelAI 

Модель NovelAI под Stable-Diffusion

Там недавно слили исходники NovelAI, на сколько знаю сервис генерит истории по описанию, что то вроде AI Dungeon. Но с 3 октября у них появилась фича генерить и изображения по описанию. Собственно слили и её.

Автор репозитория одной из сборок, AUTOMATIC1111 добавил в свою сборку поддержку работы новых слитых моделей ,его кстати забанили в офф. дискорде Stable Diffusion после произошедшего.

Если хотим поиграться с новой моделью, а выдаёт она довольно неплохие результаты, то нам нужно:

1. Установить сборку Stable Diffusion от AUTOMATIC1111 - https://github.com/AUTOMATIC1111/stable-diffusion-webui

2. Качаем модель (у них есть NSFW и SFW версии) и некоторые ещё необходимые вещи из слитых материалов - magnet:?xt=urn:btih:5bde442da86265b670a3e5ea3163afad2c6f8ecc&dn=novelaileak

Name > □ > > > > > > > > > > □ □ □ □ □ novelaileak github stableckpt Q animefull-final-pruned □ animefull-latest □ animefull-prevgood □ animesfw-final-pruned □ animesfw-latest □ animesfw-prevgood □ extra-sd-prune Q modules O vector_adjust Q animevae.pt □ clean.py workspace

3. Переименуйте model.ckpt, что лежит внутри animefull-final-pruned в любоеназвание.ckpt. например в novelai.ckpt, теперь переименуем animevae.pt в название которое мы дали предыдущему файлу и добавляем к нему .vae.pt к примеру в novelai.vae.pt... Теперь заходим директорию \stable-diffusion-webui\, заходим в папку models и создаём там папку с именем hypernetworks и кидаем в неё файлы aini.pt, anime.pt, anime_2.pt и т.д из папки modules, что мы скачивали. Теперь в папку \models\Stable-diffusion\ с основными моделями что мы используем, переносим ранее переименованый файл novelai.ckpt и файл novelai.vae.pt

4. Запускаем Stable Diffusion и переходим в настройки, ищем раздел "Stable Diffusion" и включаем нужную модель и finetune hypernetwork

outputs/extras-i mages Output directory for grids; if empty, defaults to two directories below Output directory for txt2img grids outputs/txt2img-grids Output directory for img2img grids outputs/img2img-grids Directory for saving images using the Save button log/images System VRAM usage

5. Готово, можем работать с новой моделью.

NovelAI использует CFG:11 и негативные промты: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, поэтому если хотите результаты похожие на те, что генерит оригинальная, то используйте эти параметры.

В некоторых промптах взятых напрямую из NovelAI может встречаться синтаксис {}. Он предназначен только для официального сервиса NovelAI. Так же усиливает акцент, как и (), но акцентирование увеличивается только в 1,05 раза вместо 1.1 с (). Поэтому если прям точь в точь повторить результат с понравившегося промпта, что увидели в интернетиках, то используем (слово:1.05) или видим {{}}, то используем (слово:1.1025)... А лучше почитайте https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features для понимания всяких тонких фишек.

Ну надеюсь всё правильно описал расписал. Если есть вопросы спрашивайте, если они в рамках понимания моего разума, то отвечу. Ниже приложу пару примеров изображений и промптов к ним, которые способна выдать модель. К слову через эту модель лучше генерить всякие анимешные арты ибо они там получаются лучше всего.

Мои:

((masterpiece)), painting of a ((Mandalorian)) bounty hunter, Star wars, Tatooine, space, stars, art by John J. Park
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
Steps: 150, Sampler: Euler, CFG scale: 11, Seed: 3998559443, Size: 512x704, Model hash: 925997e9

нейросети,Stable diffusion,длиннопост,NovelAI

((masterpiece)), girl,red dress,short hair,summer, twintails, black hair,
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
Steps: 150, Sampler: Euler, CFG scale: 11, Seed: 3013799092, Size: 512x704, Model hash: 925997e9

нейросети,Stable diffusion,длиннопост,NovelAI

Из Discord'a NovelAI:

copic, thick outlines, {{mohawk, shaved sides}}, 1girl, {vibrant}, deep shadows, deep space, {{80s, scifi, movie poster}}, skin tight spacesuit, jumpsuit, {power armor}, {{small breasts}}, closeup, detailed eyes, torso, headshot

нейросети,Stable diffusion,длиннопост,NovelAI

{{BEST QUALITY}}, {{MASTERPIECE}}, {{HIGH RES}}, {{CINEMATIC LIGHTING}}, {{DETAILED}}, {{TELEPHOTO LENS}}, beautiful hd background, high detailed background, {realistic shadows}, HD shadows, {{{midjourney}}}, tarte (hodarake), Anor Lando, avataart, Andy Livy, by dark album, god teir background art, realistic, realistic portrait, masterpiece portrait, {{{{{{MASTERPIECE}}}}}}, sharp, photo realistic, background focus, {{{{{background only}}}}}, futuristic city, future, advanced technology, neon lights, holograms, flying ships, buildings metalic silver , advanced civilization, year 5096 , science fiction, sci-fi, futuristic dome, matrix

нейросети,Stable diffusion,длиннопост,NovelAI

{white hair}, {very long hair}, gloves, black yellow coat, bandaged wrist, torn clothes, {{black}} eyeshadow, black and white eyes, earrings, {{floating crown}}, {star halo}, detached wings, {{masterpiece}}, {1girl}, black smear on right side of face, space background, {goddess}, {standing on a white platform}, {star symbol on clothes}, star earrings, {{medium}} breasts, bandaged torso, patterns on eye pupils, long majestic black yellow coat, chain earrings, makeup, large black and yellow coat, inside a cathedral at night, {detailed large crown}, character focus, floating stars, presenting a menger cube, magic cubes on background, dark magic, serious, {divine}, {{teenage}}, mini universe above hand, black cubes on the background, supernova on the background, decorated hair, covered body, {{{black background}}}, light above head, spirals on background, fractal patterns, {{dirty face}}, bandaged arms, fractal background

нейросети,Stable diffusion,длиннопост,NovelAI

Развернуть

Stable diffusion нейронные сети stable diffusion extensions длиннопост geek песочница 

Color cutoff stable diffusion extension

Расширение, устанавливаемое на WebUI от Automatic1111, позволяющее жёстко привязать запрашиваемый цвет к указанному в промпте объекту. Наверняка замечали, что при запросе различных цветов для различных деталей нейросетка часто рисует указанные цвета где попало на изображении. Вот,например [a cute girl, white shirt with green tie, red shoes, blue hair, yellow eyes, pink skirt]

Stable diffusion,нейронные сети,stable diffusion extensions,длиннопост,geek,Прикольные гаджеты. Научный, инженерный и айтишный юмор,песочница

Волосы внезапно стали розовыми,несмотря на прямое указание их голубого цвета в промпте. А вот результат после подключения данного модуля (все прочие настройки, включая seed остались без изменения):

Stable diffusion,нейронные сети,stable diffusion extensions,длиннопост,geek,Прикольные гаджеты. Научный, инженерный и айтишный юмор,песочница

Нейросеть даже более бережно отнеслась к запросу, вставив таки туфли.

Инструкция для установки и использования по шагам:
1. Запускаем нейросеть, открываем вкладку [Extensions] и подвкладку [Install from URL]. Туда вводим "https://github.com/hnmr293/sd-webui-cutoff" без кавычек. Жмём [Install], перезапускаем нейросеть (закрыть консоль и запустить заново).
2. Во вкладке новых text2image генераций вводим свой промпт, например [a cute girl, white shirt with green tie, red shoes, blue hair, yellow eyes, pink skirt] и прочие настройки, что вам нравятся.
3. Обращаем внимание, что после установки и перезапуска внизу вкладки text2image появилось дополнительное ниспадающее меню. Разворачиваем его, чекаем бокс [Enabled] и вводим цвета объектов, указанных в промпте, разделяя их запятыми. В примере выше это [white, green, red, blue, yellow, pink,]. Не забываем запятую после последнего токена, автор указывает, что она важна и без неё могут быть ошибки. Вес (weight) выкручиваем на максимум (2). Прочие детали пока не трогаем, поиграться с ними можно позднее, сам ещё не до конца разобрался.
4. Жмём волшебную кнопку генерации и наблюдаем результат.

ВАЖНО: дополнение создано преимущественно для анимешных моделей на базе SD 1.5. При попытке работать с ним на весах (моделях, чекпоинтах) на базе SD 2.0 и 2.1 результаты были менее впечатляющими.

Вот ещё пара картинок для сравнения. Слева картинка до включения дополнения, справа - с его использованием. Простите за кривую вёрстку, я рукожоп. Создано на Anything 3.0

Stable diffusion,нейронные сети,stable diffusion extensions,длиннопост,geek,Прикольные гаджеты. Научный, инженерный и айтишный юмор,песочница

Stable diffusion,нейронные сети,stable diffusion extensions,длиннопост,geek,Прикольные гаджеты. Научный, инженерный и айтишный юмор,песочница

Stable diffusion,нейронные сети,stable diffusion extensions,длиннопост,geek,Прикольные гаджеты. Научный, инженерный и айтишный юмор,песочница

Stable diffusion,нейронные сети,stable diffusion extensions,длиннопост,geek,Прикольные гаджеты. Научный, инженерный и айтишный юмор,песочница

Tips от автора дополнения с моим вольным переводом:

#0 Give priority to colors, put them first and then everything else, 1girl, masterpiece... but without going overboard, remember tip #3.
Ставьте цвет в приоритете, помещайте его перед всем прочим, но не переборщите, помните про третий совет.

#1 The last Token of Target Token must have "," like this: [white, green, red, blue, yellow, pink,]
ATTENTION: For some people it works to put a comma at the end of the token, for others this gives an error. If you see that it has an error, delete it.После последнего токена в поле Target Token должна стоять запятая, как в примере: [white, green, red, blue, yellow, pink,]ВНИМАНИЕ: у некоторых работает нормально при помещении запятой в конец токена, а у некоторых выдаёт ошибку. Если у вас выскочила ошибка - удалите запятую. 

#2 The color should always come before the clothes. Not knowing much English happened to me that I put the colors after the clothes or the eyes and the changes were not applied to me.
Описание цвета нужно ставить перед объектов в промпте. Не зная английского, я указывал цвет после упоминания одежды/глаз и изменения не применялись.

#3 Do not go over 75 token. It is a problem if they go to 150 or 200 tokens.
Не напихивайте больше 75 токенов (деталей промпта, разделённых запятыми). Большое количество токенов для дополнения сложновато.

#4 If you don't put any negative prompt, it can give an error.
Если не вводить негативный промпт, то может выскочить ошибка.

Ещё автор пишет, что эффективность дополнения 95%, однако, лично у меня результаты менее впечатляющие. Вероятно, это связано с тем, что автор предпочитает какую-то конкретную модель.

Развернуть

длиннопост QR-код Stable diffusion нейронные сети 

Пользователь Reddit с ником nhciao опубликовал серию художественных QR-кодов, созданных с использованием модели ИИ для синтеза изображений Stable Diffusion. Картинки, выполненные в стиле аниме и традиционного японского искусства, являются реальными QR-кодами и могут считываться смартфоном.

длиннопост,QR-код,Stable diffusion,нейронные сети

	P	
ÉÊ,длиннопост,QR-код,Stable diffusion,нейронные сети

длиннопост,QR-код,Stable diffusion,нейронные сети

длиннопост,QR-код,Stable diffusion,нейронные сети

длиннопост,QR-код,Stable diffusion,нейронные сети

длиннопост,QR-код,Stable diffusion,нейронные сети

Развернуть

Stable diffusion нейронные сети нейромазня ControlNet гайд длиннопост 

Практическое применение нейросетей

Раз уж я вошёл в мир нейросетей благодаря реактору (через слитую модель novelAi и гайду к ней), то хочу вернуть дань благодарности этим небольшим мануалом.

Вы сможете генерировать прикольные арты на основе любого логотипа \ текста буквально в пару шагов.

0) Нужен stable diffusion от automatic1111 свежей версии (как его устанавливать тут не буду описывать);

1) Устанавливаем расширение ControlNet:

a) Копируем ссылку: https://github.com/Mikubill/sd-webui-controlnet

b) Идём во вкладку extensions -> install from URL, в первое поле вставляем ссылку и жмакаем install

txt2img img2img Extras PNG Info Checkpoint Merger Train OpenPose Editor Depth Library Settings l Extensions Installed Available Install from URL — URL for extension's git repository https://github.com/Mikubill/sd-webui-controlnetl Local directory name Leave empty for auto Install,Stable

c) Во вкладке installed на всякий случай проверяем апдейты: "Check for updates", и нажимаем "Apply and restart UI"

txt2img img2img Extras PNG Info Checkpoint Merger Train OpenPose Editor Depth Library Settings Extensions l Installed Available Install from URL Apply and restart Ul Check for updates Extension URL Version Update @ openpose-editor https://github.com/fkunnl326/openpose-editor 124e47c5 (Sun

После этих манипуляций у Вас перезагрузится web страница и появится вкладка "ControlNet" в txt2img:

txt2img img2img Extras PNG Info Checkpoint Merger Train OpenPose Editor Depth Library Setti bomberman blur, low quality, bad art, man, face, skull, text Sampling method Sampling steps 20 Euler a v v J Width 768 Batch count 4 ti Height 768 \ / Batch size 1 CFG Scale Seed -1

(Если не появилась, то попробуйте Settings, нажать Apply и перезапустить Stable Diffusion полностью)

d) Загружаем модели для ControlNet:

для этого идём сюда: https://civitai.com/models/9251/controlnet-pre-trained-models

скачиваем все версии моделей (там есть раздел Versions с отдельной кнопкой загрузки);

все скачанные файлы закидываем в <путь до SD>\stable-diffusion-webui\extensions\sd-webui-controlnet\models

2) Генерируем арты:

a) подготавливаем свой логотип \ текст. 

я сделал такую картинку в фш:

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

p.s: походу желательно не использовать прозрачный фон (у меня с ним ничего не вышло).

b) двигаем настройки ControlNet:

ControlNet Invert colors if your image has white background. Change your brush width to make it thinner if you want to draw something. 2. Нажимаем "Enable"; Invert Color (если фон белый); Low VRAM @ Enable @ Invert Input Color RGBtoBGR @ Low VRAM Guess Mode Preprocessor 3- p ^processor:

c) и наконец генерируем (выставляем размер, пишем promptы, жмакаем generate).

единственное НО: у меня не получилось подружить controlNet с "hiresfix". даже "latent(nearest)" начинает ломать образ. поэтому генерировал сразу в 768х768 (Вам, возможно, надо будет пробовать с 512х512)

Stable Diffusion Checkpoint --------------------- dreamlikeDiffusionl0_10.ckpt [0aecbcfa2c] ^ SDVAE G Automatic G Clip skip r 2 Show live previews of the created image txt2img img2img Extras PNG Info Checkpoint Merger Train OpenPose Editor Depth Library Settings Extensions 2/75

любые LORA, HyperNetwork, embeddings прекрасно работают.

модель на которой я генерил: https://civitai.com/models/1274/dreamlike-diffusion-10

ну и примеры того что у меня получилось:

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Stable diffusion,нейронные сети,нейромазня,ControlNet,гайд,длиннопост

Идея честно спизженна отсюда:

https://www.reddit.com/r/StableDiffusion/comments/11ku886/controlnet_unlimited_album_covers_graphic_design/

Ну и напоследок хочу сказать что это расширение умеет гораздо большее. например можно полностью копировать стиль фото \ любые позы \ выражения лиц и ДАЖЕ рисовать идеальные руки и ноги (причём с фокусом на них). Но и запариться там нужно чуть сильнее)

Развернуть

Stable diffusion нейронные сети драконы длиннопост нагенерил сам 

скрещиваем ягодки и драконов

клубника

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

лимон

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

малина

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

ананас

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

а еще есть такой фрукт -  Kiwano

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

результат с этим фруктом:

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

смородина

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

Stable diffusion,нейронные сети,драконы,длиннопост,нагенерил сам

Развернуть

Charlotte Baskerville Pandora Hearts Anime фэндомы StableDiffusion нейронные сети нагенерил сам длиннопост Anime Ero 

Charlotte Baskerville,Шарлотта Баскервиль,Pandora Hearts,Сердца Пандоры,Anime,Аниме,фэндомы,StableDiffusion,нейронные сети,нагенерил сам,длиннопост,Charlotte Baskerville,Pandora Hearts,Anime,fandoms,Stable diffusion,neural networks,,Anime Ero,Взрослые Няшки
Charlotte Baskerville,Шарлотта Баскервиль,Pandora Hearts,Сердца Пандоры,Anime,Аниме,фэндомы,StableDiffusion,нейронные сети,нагенерил сам,длиннопост,Charlotte Baskerville,Pandora Hearts,Anime,fandoms,Stable diffusion,neural networks,,Anime Ero,Взрослые Няшки
Charlotte Baskerville,Шарлотта Баскервиль,Pandora Hearts,Сердца Пандоры,Anime,Аниме,фэндомы,StableDiffusion,нейронные сети,нагенерил сам,длиннопост,Charlotte Baskerville,Pandora Hearts,Anime,fandoms,Stable diffusion,neural networks,,Anime Ero,Взрослые Няшки
l/ásñ л Л 1 yJïfJmя ч,,Charlotte Baskerville,Шарлотта Баскервиль,Pandora Hearts,Сердца Пандоры,Anime,Аниме,фэндомы,StableDiffusion,нейронные сети,нагенерил сам,длиннопост,Charlotte Baskerville,Pandora Hearts,Anime,fandoms,Stable diffusion,neural networks,,Anime Ero,Взрослые Няшки
Charlotte Baskerville,Шарлотта Баскервиль,Pandora Hearts,Сердца Пандоры,Anime,Аниме,фэндомы,StableDiffusion,нейронные сети,нагенерил сам,длиннопост,Charlotte Baskerville,Pandora Hearts,Anime,fandoms,Stable diffusion,neural networks,,Anime Ero,Взрослые Няшки
Charlotte Baskerville,Шарлотта Баскервиль,Pandora Hearts,Сердца Пандоры,Anime,Аниме,фэндомы,StableDiffusion,нейронные сети,нагенерил сам,длиннопост,Charlotte Baskerville,Pandora Hearts,Anime,fandoms,Stable diffusion,neural networks,,Anime Ero,Взрослые Няшки
Развернуть

очень длиннопост нейросетевые фурри furotica furry art furry dog shiba inu нагенерил сам Stable diffusion нейронные сети руководство ...длиннопост furry фэндомы furry canine 

Раз уж пошла такая свистопляска то я тоже поделюсь концентрацией своего двухмесячного опыта в генерации собак.

Это руководство для тех, кто поставил себе Stable diffusion и хочет разобраться в построении промта, а так же узнать "почему вон у того чувака такие красивые собаки а у меня какая то херня?". Предполагается наличие базовых знаний интерфейса. 

Не претендую на истину в последней инстанции, просто показываю как это делаю я (и да, я управляю только промтом. Не считая ADetailer и Hires.fix. Я прост тупой, не смог разобраться как пользоваться другими инструментами :) хотя если их освоить то можно добиться куда лучших результатов и тратить меньше времени). Поехали.

Все ресурсы были взяты с Civitai.com

Все ключевые слова либо подобраны самостоятельно, либо подсмотрены в чужих промтах, либо взяты из тегов e621.

Прежде всего расскажу про модели, которыми пользуюсь: 

- Omega mix: с этого начинал. Отличная модель, при отрисовке склоняется ближе к мультяшной анимешности. К сожалению автор больше не развивает ее но я не теряю надежды на будущие обновления.

 - Furryrock: более точная в отрисовке модель. Активная в поддержке, почти все свои картинки я генерировал на версии 6.0, недавно появилась версия 7.0

 - BB95 Furry Mix: прекрасная модель, с невероятным диапазоном стилей прорисовки - от пиксаровской мультяшности до строго реализма. На ней я и буду показывать пример построения промта.

Запускаем webui-user.bat, входим в браузер, смотрим поле настроек генерации: 

Sampling method: я буду использовать UniPC

Sampling steps: я буду использовать 75 шагов.

Width и Height: 600х800, портретный формат 3:4

CFG Scale: всегда использую 7 но рекомендую экспериментировать.

Начинаем прописывать промт. 

(Напоминаю, что все параметры должны быть односложными и без отрицаний. Все параметры разделяются запятой, можно акцентировать внимание нейросети на конкретном параметре с помощью (скобок),  ((двойных скобок)) и ((силы параметра)):0.1-1. Так же с помощью скобок можно объединять общие параметры в единый блок (например параметры, описывающие только лицо))

Я хочу сгенерировать одну маленькую стройную мохнатую девочку собачку.

a tiny slim furry girl ((dog)) solo 

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Получился какой то Добби. Пусть встанет красиво.

a tiny slim furry girl ((dog)) solo,posing,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Неплохо но выглядит как мальчик, давайте добавим женских деталей.

a tiny slim furry girl ((dog)) solo,posing,choker,nude,small breasts,large nipples,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Теперь это точно девочка. Позиция рук рандомна, давайте положим их ей на бедра и заодно пропишем детали.

a tiny slim furry girl ((dog)) solo,posing,choker,nude,small breasts,large nipples,hands on hips,fingers,finger claws,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Уже лучше но это скорее человек чем собака, давайте сделаем из нее настоящую собаку, добавим ей породу прическу и шерсть.

a tiny slim furry girl ((shiba inu dog)) solo,posing,choker,nude,small breasts,large nipples,hands on hips,fingers,finger claws,short hairstyle,fluffy detailed fur,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Отлично но нет экспрессии, это девочка просто позирует. Добавим настройки камеры.

low-level angle,close-up,a tiny slim furry girl ((shiba inu dog)) solo,posing,choker,nude,small breasts,large nipples,hands on hips,fingers,finger claws,short hairstyle,fluffy detailed fur,

Я знаю у такого ракурса есть любители :3

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Сменим угол и посмотрим что получится.

Обратите внимание, несмотря на то, что мы прописали параметр short hairstyle, он не применился, прически нет. Давайте акцентируем внимание нейросети на нем.

high-level angle,close-up,a tiny slim furry girl ((shiba inu dog)) solo,posing,choker,nude,medium breasts,large nipples,hands on hips,fingers,finger claws,((short hairstyle)):1,fluffy detailed fur,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Такое себе. Давайте добавим первую волшебную фразу.

high-level angle,close-up,a beautiful and detailed portrait of a tiny slim furry girl ((shiba inu dog)) solo,posing,choker,nude,medium breasts,large nipples,hands on hips,fingers,finger claws,((short hairstyle)):1,fluffy detailed fur,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Оцените разницу самостоятельно.

Добавим в негативное поле текстовые инверсии - это концентрат тегов, которые умещаются в небольших файлах, что бы не надо было их регулярно прописывать. Они запрещают нейронке рисовать в низком качестве, контролируют анатомические, физические и прочие ненормальности и мутации, не являясь однако панацеей. Гуглите названия в сети, все в свободном доступе.

high-level angle,close-up,a beautiful and detailed portrait of a tiny slim furry girl ((shiba inu dog)) solo,posing,choker,nude,medium breasts,large nipples,hands on hips,fingers,finger claws,((short hairstyle)):1,fluffy detailed fur,
Negative prompt: bad-artist,boring_e621_v4,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Отлично. но самой картинке чего то не хватает. Антуража ей не хватает.

high-level angle,close-up,red sunset beach,clouds,a beautiful and detailed portrait of a tiny slim furry girl ((shiba inu dog)) solo,posing,choker,nude,medium breasts,large nipples,hands on hips,fingers,finger claws,((short hairstyle)):1,fluffy detailed fur,
Negative prompt: bad-artist,boring_e621_v4,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Прекрасный закат, я люблю закаты и рассветы. Интересно, отличает ли их нейронка? Попробуйте поэкспериментировать сами.

Я хочу подвинуть девочку ближе к себе. Для этого я предпочитаю запрещать нейронке рисовать определенные части тела, отдаляющие объект в кадре из-за увеличения высоты.

high-level angle,close-up,red sunset beach,clouds,a beautiful and detailed portrait of a tiny slim furry girl ((shiba inu dog)) solo,posing,choker,nude,medium breasts,large nipples,hands on hips,fingers,finger claws,((short hairstyle)):1,fluffy detailed fur,
Negative prompt: legs,knees,bad-artist,boring_e621_v4,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Работает, не всегда но работает. Но наша собака постоянно крутится, давайте повернем ее прямо. И раз уж она стоит прямо давайте придадим качества ее глазам и направим взгляд прямо на нас. 

high-level angle,close-up,red sunset beach,clouds,a beautiful and detailed portrait of a tiny slim furry girl ((shiba inu dog)) solo,front view,posing,choker,nude,medium breasts,large nipples,hands on hips,fingers,finger claws,((short hairstyle)):1,fluffy detailed fur,perfect shiny eyes,long eyelashes,looking at viewer,
Negative prompt: legs,knees,bad-artist,boring_e621_v4,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Выглядит не так хорошо как хотелось бы. Увеличим разрешение!

high-level angle,close-up,red sunset beach,clouds,a beautiful and detailed portrait of a tiny slim furry girl ((shiba inu dog)) solo,front view,posing,choker,nude,medium breasts,large nipples,hands on hips,fingers,finger claws,((short hairstyle)):1,fluffy detailed fur,perfect shiny brown eyes,long eyelashes,looking at viewer,
Negative prompt: legs,knees,bad-artist,boring_e621_v4,

Width и Height: 900х1200, портретный формат 3:4

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

По красоте, но можно сделать еще лучше! Добавим лору освещения и напишем вторую волшебную фразу. Гуглите название в сети, все в свободном доступе.

Кроме того есть инструмент ADetailer. Я использую его для прорисовки лиц. Пожалуй единственный инструмент который я активно использую из-за его простоты. Давайте включим его.

ADetailer - жмем галочку и в первой вкладке выбираем mediapipe_face_full, во второй mediapipe_face_mesh_eyes_only. Все

<lora:光影:1>,high-level angle,close-up,red sunset beach,clouds,cinematic lighting, bright lighting,a beautiful and detailed portrait of a tiny slim furry girl ((shiba inu dog)) solo,front view,posing,choker,nude,medium breasts,large nipples,hands on hips,fingers,finger claws,((short hairstyle)):1,fluffy detailed fur,perfect shiny brown eyes,long eyelashes,looking at viewer,

Negative prompt: legs,knees,bad-artist,boring_e621_v4,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Как видите, дополнительное освещение делает магию. Но все это время у собаки отсутствовал один очень важный компонент - хвост! К тому же сохраняется проблема с волосами. Давайте отредактируем параметр, отвечающий за прическу. И пусть наша собака улыбается, Не бойтесь экспериментировать. 

<lora:光影:1>,high-level angle,close-up,red sunset beach,clouds,cinematic lighting, bright lighting,a beautiful and detailed portrait of a tiny slim furry girl ((shiba inu dog)) solo,front view,posing,choker,nude,medium breasts,large nipples,hands on hips,fingers,finger claws,((long hairstyle)):1,fluffy detailed fur,perfect shiny brown eyes,happy smile,fangs,long eyelashes,short fluffy tail,looking at viewer,
Negative prompt: legs,knees,bad-artist,boring_e621_v4,

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Красота. Но можно сделать еще лучше! Дальше начинается магия.

Указанные в начале поста модели умеют имитировать стиль художников без всякой дополнительной программной обвязки. 

При добавлении ников художников в промт их стили смешиваются, давая порой совершенно уникальную прорисовку. Причем если добавлять одних и тех же художников но в разной последовательности, стиль может меняться. Без понятия, как это работает.

Помните фильм "Парфюмер" 2006 года? Мэтр Джузеппе Бальдини обучает молодого Гренуя азам смешения запахов для получения качественных ароматов. Здесь я вам покажу как я смешиваю стили разных художников на конкретном примере. Промт в картинках не меняется, только добавляются художники.

Помните, что добавление художника в промт неизбежно меняет генерацию, даже при условии использования конкретного сида.

Прежде идет основа, то что задаст всей картинке стиль. Я выберу красивый и очень сильный стиль ewgengster, он легко доминирует над остальными стилями, имитируя рисовку от руки. 

art by ewgengster

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Далее идет основа, тело рисунка. Буквально, я использую стили тех художников, в чьих рисунках тело прекрасно построено с точки зрения анатомии.

Добавим wamudraws, этот стиль сделает линии и формы мягче, увеличит глаза, сделает общий стиль мультяшным.

art by ewgengster wamudraws

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

fluffkevlar напротив, уплотнит общую стилистику, придаст лицу строгость линий, улучшит анатомию.

art by ewgengster wamudraws fluffkevlar 

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

iskra прорисует мышцы, рельеф тела, добавит аккуратный плоский животик, придаст лицу симметричность и форму.

art by ewgengster wamudraws fluffkevlar iskra 

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

personalami покрасит все в своем неповторимом стиле, придаст лицу человечности, дополнительно улучшив освещение на теле.

art by ewgengster wamudraws fluffkevlar iskra personalami 

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Дальше идет блок с полировкой. Здесь я применяю стили художников, чьи навыки в рисовании мелких деталей вроде шерсти или чешуи, волос или детального заднего плана достигают совершенства.

art by ewgengster wamudraws fluffkevlar iskra personalami honovy hioshiru foxovh 

VI/HlV ш. _ж. Шк \J,длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

"И дополнительная нота, один финальный штрих, который будет царить над всеми прочими!"

silverfox5213 добавит мультяшности и пушистости, улучшит прорисовку волосам, повысит детализацию глаз. 

art by ewgengster wamudraws fluffkevlar iskra personalami honovy hioshiru foxovh silverfox5213 

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

Круто? Мне нравится. Пишите свое мнение в комментах.

Эта картинка была не только сгенерирована в разрешении 900х1200, она была проапскейлена при помощи дефолтного инструмента Hires.fix, вот его параметры:

Upscaler: 4x-UltraSharp 

Denoising strength: 0.1

Upscale by: 1.5 (выходное разрешение 1350х1800)

Итоговый промт:

<lora:光影:1>,high-level angle,close-up,red sunset beach,clouds,cinematic lighting, bright lighting,art by ewgengster wamudraws fluffkevlar iskra personalami honovy hioshiru foxovh silverfox5213,a beautiful and detailed portrait of a tiny slim furry girl ((shiba inu dog)) solo,front view,posing,choker,nude,small breasts,large nipples,hands on hips,fingers,finger claws,((long hairstyle)):1,fluffy detailed fur,perfect shiny brown eyes,happy smile,fangs,long eyelashes,short fluffy tail,looking at viewer,
Negative prompt: ,bad-artist,boring_e621_v4,
Steps: 75, Sampler: UniPC, CFG scale: 7, Seed: 3690777701, Size: 900x1200, Model hash: 2bb2c42192, Model: bb95FurryMix_v120, Denoising strength: 0.1, ADetailer model: mediapipe_face_full, ADetailer confidence: 0.3, ADetailer dilate/erode: 4, ADetailer mask blur: 4, ADetailer denoising strength: 0.4, ADetailer inpaint only masked: True, ADetailer inpaint padding: 32, ADetailer model 2nd: mediapipe_face_mesh_eyes_only, ADetailer confidence 2nd: 0.3, ADetailer dilate/erode 2nd: 4, ADetailer mask blur 2nd: 4, ADetailer denoising strength 2nd: 0.4, ADetailer inpaint only masked 2nd: True, ADetailer inpaint padding 2nd: 32, ADetailer version: 23.10.1, Hires upscale: 1.5, Hires upscaler: 4x-UltraSharp, Lora hashes: "光影: ae8ec1b28b09", TI hashes: "bad-artist: 2d356134903e, boring_e621_v4: f9b806505bc2", Version: 1.6.0

То что я выбрал именно этих художников не значит что работают только они, как и не означает того, что вы не можете сделать комбинацию длиннее или короче. Просто это моя любимая комбинация на данный момент, с ней я публикую свою лисичку в твиттере. Открывайте сетевые ресурсы, исследуйте стили художников и экспериментируйте с комбинациями ников, я показал вам лишь мизер возможностей.

И разумеется, что с этими комбинациями можно использовать лоры.

art by w4g4 skygracer AuranCreations Pakwan008 Bonifasko (промт тот же)

длиннопост,очень длиннопост,нейросетевые фурри,furotica,фурротика,furry,фурри,фэндомы,furry canine,furry art,furry dog,shiba inu,нагенерил сам,Stable diffusion,нейронные сети,руководство

З.Ы. Самые внимательные наверное заметили, что в промте так то указан high-level angle, что соответствует наблюдению "сверху вниз", тогда как все картинки имеют прямой угол обзора, что соответствует medium-level angle. Попробуйте предположить, отчего так произошло и как это можно исправить.

Развернуть

нейросети нейромазня Stable diffusion NovelAI DreamBooth длиннопост 

Тренируем модели через DreamBooth на конкретные образы.

Здравствуйте мои любители нейронного колдунства и прочих искуственно интелектуальных утех. Сегодня мы научимся тренировать уже готовые модели на образы которые мы хотим. Локально на нашем ПК без всяких Google Colab и Runpod.

Если я где то накосячил, поправьте в коментариях.

ДИСКЛЕЙМЕР! БУДЕТ ОЧЕНЬ МНОГО ТЕКСТА. Этот способ тренировки через DreamBooth подразумевает, что у вас в гробу установлена карточка (Nvidia скорее всего только поддерживается) с минимум 8-10 ГБ видеопамяти. Тренировка сетки уже куда более ресурсожрущий процесс, чем просто генерация картиночек. Ранее DreamBooth требовал минимум 24ГБ памяти. Так что пока я нашёл нужные материалы, проверил их и понял, как с этим работать, прошла не одна неделя... Стояла бы у меня 3090, то этот гайд вышел бы ещё в середине октября. но если всё же хочется побаловаться, то можно воспользоваться облачными google colab и runpod. Но я так же затрону гиперсети (Hypernetworks), результаты с ними куда менее презентабельные чем через dreambooth, но можно запустить на карточках попроще. Если вы всё же железо-бетонно готовы следовать дальше, прошу.

И так, продолжим. DreamBooth модель можно натренировать на свою рожу, свою собаку, любимую табуретку, или какого нибудь персонажа.

В данном посте я буду работать на модели NAI (NovelAI я буду сокращать в дальнейшем) ибо буду тренить на нашу Реактор-тян. Если хотите сделать своё лицо или, что то из нашего бренного мира то подойдёт обычная модель Stable Diffusion 1.4

В конце будет небольшой Q&A и заметки, дабы всю (почти) воду и рассуждения отградить от основной информации.

Я разобью гайд на несколько частей. Тренировка DreamBooth и тренировка Embeddings с Hypernetworks.

DreamBooth:

Знаю, что уже появился спобоб тренить DB (DreamBooth я буду сокращать в дальнейшем) через webui stable diffusion от AUTOMATIC1111 в виде загружаемого плагина, но чёрт, вы хоть видели сколько там настроек? Я устану вам объяснять каждую и вы умрёте от духоты, поэтому я выбрал более дружелюбное, отдельно загружаемое приложение - DreamBooth-gui - https://github.com/smy20011/dreambooth-gui скачиваем и устанавливаем его по инструкции приложеной на Гитхабе, не буду тут расписывать ибо и так много текста.

Запускаем приложение и видим первое, что нас просят сделать, а именно загрузить набор изображений на который мы хотим натренировать модель. Делаем их в разрешении 512x512, где надо фотожопим лишнее.

0 dreambooth-gui □ X Pick Image Config Trainer Train,нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Как только залили изображения, я сделал 8шт, переходим на следующую вкладку Confin Trainer, здесь мы зададим нужные параметры и настройки. Рассуждения о зависимости некоторых параметров от других, пока где-то на уровне теории заговоров, но основные зависимости я объясню дальше.

И так, для начала выбираем модель. По умолчанию нам предложит CompVis SD v1.4, который оно подкачает с hugging face. Но сегодня я работаю с NAI поэтому указываю путь до папки с моделью. Сейчас я на версии программы v0.1.8. и она требует, что бы модель была конвертирована из .ckpt в diffusers. Вот ссылка на мою конвернутую модель NAI - https://drive.google.com/file/d/1BnZyUb9C5wjz7Lcp1Dn8JidZLQ4taQEy/view?usp=share_link

Далее указываем Instance prompt, это должно быть уникальное слово которого не должна знать модель, то есть никаких boy, girl, и имён персонажей которых может знать модель. В дальшейшем это название мы будем указывать среди промптов, что бы модель на это тригеррилась и генерила уже с учётом натренированности этого концепта.

Class prompt указываем ёмко, кратно, что мы тренируем. У нас один женский персонаж и раз уж модель NAI тренилась на датасете danbooru, то я и укажу женский тег от туда, а именно 1girl.

Training Steps я выставлю 1000, а Learning Rate 5e-6, но это крайне запутанные настройки, о них я побольше размусолю ниже в разделе с водой и по ходу текста.

Аргументы не трогаю.

0 dreambooth-gui □ X Pick Image Config Trainer Train Run dreambooth on NVIDIA GeForce RTX 3080, 8.65gb free Model C:\Users\egorv\dreambooth-gui\models\NAI Choose Local Model Name of the base model, (eg, CompVis/stable-diffusion-v1-4) Instance prompt joyreactorchan Name of the instance,

Отлично, переходим к разделу тренировки, здесь нас попросит вставить наш Hugging Face Token. По идеи это нужно только если мы качаем модель SDv1.4 или прочую с Hugging Face, а у нас она локально на пк уже стоит, но всё равно просит, поэтому регаемся там и идём в настройках раздел с токенами https://huggingface.co/settings/tokens и создаём токен на WRITE и вставляем его в наше поле. Прописываем папку куда будут выгружаться все файлы после и проверяем, что бы стояла галочка, что бы модель генерилась потом в .ckpt файл в нашей папке вывода.

0 dreambooth-gui □ X Pick Image Config Trainer Train Hugging Face Token Output Dir C:\Users\egorv\dreambooth-gui\outputs\joyreactor Select B Generate model checkpoint (.ckpt file) in the output directory Training Command docker run -t —gpus=all

Иии жмём старт! И так теперь запасаемся терпением, можете заварить чай, помыться, выйти на улицу, потрогать траву, сходить в магазин и т.д, ибо процесс первого запуска НЕВЕРОЯТНО ДОЛГИЙ. Серьёзно, я сам в первый раз думал, что у меня, что то зависло. Минут 30 только оно подгружало нужные файлы, и убедитесь, что у вас на диске есть ещё место, ибо пару десятков ГБ на нём, этот процесс забьёт. Если увидите, что ошибок не вылезно, в папке \AppData\Roaming\smy20011.dreambooth были сгенерены картинки референсы по классовому промпту и вы не словили ошибку о нехватке видеопамяти (будет у многих вангую) то поздравляю, у вас пойдёт тренировка, и вы увидите, как у вас будут лететь надписи Steps ****% |▋▋▋▇| ***/1000 [**:** < 00:00, *.**s/it, loss=0.***,lr=5e-6]

На тренировку модели в 1000 шагов моей RTX 3080 потребовалось почти пол часа. Чтож, когда увидим сообщение о том, что всё готово, заходим в папку вывода, и переименовываем как хотим и переносим .ckpt файл в папку с моделями нашего stable diffusion.

Training Command Finished! "jii\datasets\joyreac :tor:/instance • S s s s Steps: 100%' Steps: 100%|| Steps: 100%|| Steps: 100%|| Steps: 100%|| Training finished, check C:\Users\egorv\dreambooth-gui\outputs\joyreactor for model output. OK /it, loss=0.257, lr=5e-6] /it, loss=0.257,

Запустите SD, загрузите модель. Проверьте результаты, всё ли выглядит так, как должно, у меня получилось... приемлимо...

joyreactorchan, 1girl, orange hair, medium hair, antenna hair, blue eyes, freckles, foxy ears, white bardot top, orange overalls, orange collar with bell, gold hairpin, gold buckles
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, furry
Steps: 60, Sampler: Euler, CFG scale: 11, Seed: 3985740085, Size: 960x960, Model hash: e02601f3, Model: joyreactor, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0

Модель DreamBooth

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Чистая NAI

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Ну вроде неплохо. Но можно лучше.

У меня выходили и более презентабельные модели, чего стоит модель с моей рожей, что генерит меня с шансом 50%, а в остальных случаях Иисуса либо Джареда Лето либо двухголовую ебаку...

Вот пример с DB, а вот чистая NAI. Ну думаю, я бы мог вопроизвести похожий результат и без DB, но потребовалось бы куда больше промптов и попыток. Тем не менее, DB приближает качество и иполнение результатов, к тем, на какие мы тренировали, поэтому если тренируете на лицо, то оно даст намного чёткие и предсказуемые результаты, чем просто по запросу "лохматый бородатый мужик"

Если хотим закрепить результат и возможно улучшить, то рекомендую потренить и Textual Inversion - https://huggingface.co/docs/diffusers/training/text_inversion Это крошечная часть нейросети обученая на наборе картинок. требует поменьше ресурсов для тренировки, чем DreamBooth. С её помощью удобно воспроизодить стили и какие то объекты. Я потреню на том же датасете картинок, что и DB.

Тренировка Embeddings (Textual Inversion)

Идём в раздел SD webui который называется Train, и в первом подразделе Create embedding начинаем заполнять пункты.

Name - просто имя файла и в дальшейшем мы будем писать это название среди промптов, что бы задействовать нужный embedding. Поэтому я использую название, то же, что и у инстанс промпта в DB, что бы тригеррить их обоих разом.

В Initilization text вписываем описание персонажа, я описал его более подробно, ибо на реактор-тян оно почему то ловит затуп и генерит совсем шлак потом. А так обычно то же, что и class prompt в DB. Число векторов на токен я выставил 8, хотя чем больше это число, то тем больше примеров картинок лучше подготовить, но остановлюсь на этом.

Stable Diffusion checkpoint JoyReactor.ckpt [e02601f3] txt2img img2img Extras PNG Info Checkpoint Merger Train Create aesthetic embedding Settings Extensions See wiki for detailed explanation. Create embedding Create hypernetwork Preprocess images Train,нейросети,нейромазня,Stable

Теперь идём в Preprocess images, вводим путь до папки с изображениями и туда, куда их выгрузит. Ставим галочку на Use deepbooru for caption, не уверен, будет ли у вас эта функция, если нету или не работает, поставьте в аргументах запуска SD аргумент "--deepdanbooru", и тогда точно всё будет ок. Эта функция создаст текстовое описание для каждого изображения в формате тегов с danbooru, так сетка лучше обучится. Если трените не на NAI моделе, а что то реалистичное, то советую использовать, Use BLIP for caption, создаст промпты как если бы их писали для работы с обычной моделью SD 1.4... Так же уделите время и вручную проверьте КАЖДЫЙ созданый текстовый документ, и сверьте его с картинкой, постарайтесь удалить ненужные промпты или добавить, то что считаете нужно, не всегда оно создаёт описание корректно. Да это муторно, но стоит без этого может натренить сетку не на то, что мы желаем.

See wiki for detailed explanation. Create embedding Create hypernetwork Preprocess images Train C:\Users\egorv\stable-diffusion-webui\training\joyreactor Preprocess,нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

OOOOO-O-Byyfgs.p 00000-0- Byyfgs.t 00001-0-Screens 00001-0-Screens 00002-0-Screens hot_1.png hot_1.txt hot_2.png 00002-0-Screens hot_2.txt 00003-0-Screens hot_3.png 00003-0-Screens hot_3.txt 00004-0-Screens 00004-0-Screens 00005-0-sdfdf.pn 00005-0-sdfdf.txt 00006-0-sdfsh3v 00006-0-sdfsh3v

И последний подпункт Train. Тут внимательно, можно ошибиться с пунктами и кнопками. Я помечу на скрине те пункты, которые мы трогаем, остальные игнорьте.

В embeddings выбираем наш созданый, в dataset directory указываем путь, куда мы выгружали изображения уже с описаниями, в prompt template file указываем путь до файла шаблона по которым оно будет трениться, я создал свой файлик, в котором внутри написано только [filewords] , прямо с квадратными скобками, это будет задействовать описания изображений которые мы создали раньше.

Save an image to log и save a cope of embedding, это параметры отвечающие за тестовое создание изображения на данном этапе тренировки и сохранинии текущего результата на момент шагов. Я генерирую изображение каждые 500 шагов и сохраняю прогресс каждые 1000, да бы проверить не произошла ли перетренировка модели, да бывыет и такое, её можно перетренировать, об этом после гайда...

И надеюсь вы не подумали, что я пропустил пункт с Embedding Learning Rate и Max Steps, то нет. Вот тут та же шляпа, что и раньше, и надо подбирать соотношения. В этот раз будем создавать поэтапно.

Для начала мы проведём тренировку на 200 шагов и Learning Rate 0.02, после увеличим число шагов до 1000 и уменьшим LR до 0.01, потом 2000 шагов и LR 0,005, 3000 и 0.002, 4000 - 0.0005 и в конце выставим 20000 шагов и скорость обучения на 0.00005. Чё страшно, запутались? Кароче, шляпа в том, что бы сетка не переобучилась, так мы её постепенно полируем, подробнее об этом после гайда в разделе с разными мыслями.

Stable Diffusion checkpoint JoyReactor.ckpt [e02601f3] txt2img img2img Extras PNG Info Checkpoint Merger Train Create aesthetic embedding Settings Extensions See wiki for detailed explanation. r \ Create embedding Create hypernetwork Preprocess images Train Train an embedding or Hypernetwork;

Вот выставили 200 шагов и 0.02 скорость, она прогонит по этим параметрам и закончит, не закрываем ничего, меняем параметры на следующие по списку, 1000 шагов и скорость 0.01 и опять жмём Train Embedding и опять идёт тренировка уже дальше с новыми данными. И т.д до конца. 20000 шагов золотая середина как по мне. У меня на это уходит около полутора часа, побольше, чем на тренировку DreamBooth, результат не будет сверх разиться, но будет чуть более в нужном нам направлении.

Loss: 0.0780509 Step: 15526 Last prompt: lgirl, orange hair, medium hair, antenna hair, blue eyes, freckles, foxy ears, white bardot top, orange overalls, orange collar with bell, gold hairpin, gold buckles, smoking, :d Last saved embedding:

Training finished at 200 steps. Embedding saved to C:\Users\egorv\stable-diffusion-webui\embeddings\joyreactorchan.pt,нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

[Epoch 24: 800/800]loss : 0.096Б130: 100% 16000/16000 [1:18:42<00:00, 3.39it/s],нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Вот примеры, того что по итогу вышло.

masterpiece, best quality, joyreactorchan, 1girl, orange hair, medium hair, antenna hair, blue eyes, freckles, foxy ears, white bardot top, orange overalls, orange collar with bell, gold hairpin, gold buckles, solo, standing, upper body
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, furry, portrait
Steps: 60, Sampler: Euler, CFG scale: 11, Seed: 370310831, Size: 768x768, Model hash: e02601f3, Model: joyreactor, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0

DreamBooth + Embedding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

DreamBooth без Embeding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

И без DreamBooth и без Embedding на чистом NAI

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Ну Embedding иногда подтягивает, некоторые результаты, иногда может быть лишним. Довольно ситуативная и спорная вещь, но вот на DreamBooth сразу узнаётся Реактор-тян, нежели на обычной NAI с теми же хорошо подобранными промптами.

И да, знаю, что вероятно будут просить уже готовую модель, так что держите ссылки на модель на Реактор-тян и готовый Embedding:

https://drive.google.com/file/d/1s2z1grZvNdVxkw5uHJQIWKecgeV39tWp/view?usp=sharing

https://drive.google.com/file/d/1pft2NvHGi5xaJ61LctRc2Lf4aixHke0Z/view?usp=sharing

Лучше пусть кто то забэкапит, а то мало ли я буду облако чистить.

Hypernetworks

Если не получилось натренить DreamBooth, то попробуйте гиперсети. Тоже прикольные результаты можно получить, если постараться.

Тренить гиперсеть на реактор-тян я не буду, поэтому опишу как делал ранее с другими вещами. Если желаете ознакомиться с материалом, по которому я и сам тренировался, прошу - https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/2670

Процесс тренировки схож с тренировкой embeddings.

Так же в заходим в раздел Train, и уже в подпункт Create Hypernetwork. Имя гиперсети пишем какое хотим, без разницы, модули 768 320 640 1280 оставляем как есть.

Теперь тут свои завертоны пойдут, просят ввести структуру слоёв гиперсети:

Для широких гиперсетей: 1, 3 ,1 или 1, 4 ,1

Для глубоких гиперсетей: 1, 1.5, 1.5, 1 или 1, 1.5, 1.5, 1.5, 1 или 1, 2, 2, 1

Широкие: подходят для запоминания новых вещей, таких как конкретное животное, человек или объект.

Глубокие: подходят для обобщения вещей, таких как стили.

Поэтому исходите из этого, для реактор-тян я бы выбрал 1, 3, 1

Следующий пункт, select activation function of hypernetwork:

Для аниме (NAI, Waifu и т. д.): Selu, Gelu, mish

Для фотографий: Relu, swish, mish,leakyrelu, rrelu

Теперь Select Layer weights initialization. Для аниме ставим xaviernormal. Если фото и т.д то по умолчанию normal.

Остальные галочки ниже необязательны.

txt2img img2img Extras PNG Info Checkpoint Merger See wiki for detailed explanation. Train Create aesthetic embedding Settings Extensions Create embedding Create hypernetwork Preprocess images Train Name Modules ✓ 768 ✓ 320 ✓ 640 ✓ 1280 Enter hypernetwork layer structure 1,2,1 Select

Потом так же подготавливаем изображения как и с embeddings, это я не буду повторять и переходим сразу в Train.

Выбираем так же как и при тренировке embedding путь до шаблона, папку с датасетом из наших картинок с текстом, сохранение результатов и картинок.

Теперь выбираем нужную гиперсеть в выпадающем списке Hypernetworks. Изменять будем раздел Hypernetwork Learning rate, а не Embedding Learning rate, как раньше и жать будем на Train Hypernetwork, а не Train Embedding.

Create embedding Create hypernetwork Preprocess images Train Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki] Batch size 1 Dataset directory Path to directory with input images Log directory textualjnversion Prompt template file

Вот примеры хороших соотношений последовательностей Steps к LR:

Для обычных людей - 0.00005:100, 0.000005:1500, 0.0000005:10000, 0.00000005:20000

А вот для извращенцев - 0.00005:100, 0.000005:1500, 0.0000005:2000, 0.00005:2100, 0.0000005:3000, 0.00005:3100, 0.0000005:4000, 0.00005:4100, 0.0000005:5000, 0.00005:5100, 0.0000005:6000, 0.00005:6100, 0.0000005:7000, 0.00005:7100, 0.0000005:8000, 0.00005:8100, 0.0000005:9000, 0.00005:9100, 0.0000005:10000, 0.000005:10100, 0.00000005:11000, 0.000005:11100, 0.00000005:12000, 0.000005:12100, 0.00000005:13000, 0.000005:13100, 0.00000005:14000, 0.000005:14100, 0.00000005:15000, 0.000005:15100, 0.00000005:16000, 0.000005:16100, 0.00000005:17000, 0.000005:17100, 0.00000005:18000, 0.000005:18100, 0.00000005:19000, 0.000005:19100, 0.00000005:20000. Этот вариант выглядит монструозно, но я его тестировал лично, и довольно хорошо работает при условии, что вы подобрали хорошие примеры изображений и текстовые описания к ним.

И так же поэтапно треним как и embedding... ВСЁ!

ВОДА и Q&A!!!

Ахренеть, как буд-то по новой пишу дипломную, но только с надеждой в том, что кому то это поможет и он воспользуется этим материалом, либо же просто покекает с того, что я потратил на это несколько недель, начиная от поиска нормального способа запуска DreamBooth и заканчивая десятком часов на попытки разобраться в особенностях и нюансах, ну и этот текст я пишу уже где то часов 6 нонстоп, набралось уже 2 c половиной тысячи слов! серьёзно, надо хоть воды налить себе, ха отличная шутка.

1)Q: Почему так сложно?

A: А кому легко?

2)Q: Можно ли было уместить это в 5 абзацев на 500 слов в общем?

A: Не знаю, пишу как умею, кто умер от духоты и захлебнулся в воде, простите)

3)Q: У меня видеокарта ******, у меня заработает?

A: Не знаю. Скорее всего на AMD, вообще никак. Если у вас есть в карте тонна видеопамяти, то должно. Либо попробуйте запустить, через Google Colab, Runpod и прочие облака с арендой видеокарт и работы с их мощностями. Я НЕ БУДУ ПИСАТЬ ГАЙД ПО КОЛАБУ, НЕЕЕЕТ!

4)Q: Не надоело ли писать вопросы и ответы?

A: Да, чёт устал, задавайте в комментариях, отвечу как смогу.

Теперь ВОДА и прочие размусоливония которых, я старался избегать в основной части гайда.

Подойдите к этапу подбора изображений для тренировки максимально отвественно и серьёзно, ибо от того какие изображения вы скормите, во многом будет зависить результат. Так же качество > колличество, будет хорошо если вы задействуете 10 годных примеров, нежели 30 посредственных. Я стараюсь выдерживать единый стиль изображений, если одна картинка будет от карандаша, другая 3D CGI, а третья в стиле Пикассо, то выйдет так себе и выйдет мешанина из этого всего. Если тренирую персонажа, то стараюсь делать акцент на лице, тело можно будет и промптами задать, но вот получить нужное лицо сложно, ну за этим и нужен DB.

Во многом из за конвертации .ckpt в diffusers я неделю ломал голову, ибо обычным скриптом предназначеным для этого у меня не выходило, но как видите удалось, а именно при помощи гуглколаба от TheLastBen. Необходимо было залить модель в колаб, прогнать через его скрипт, и выгрузить результат себе на гугл диск. В скорой версии Dreambooth gui v.0.1.9. появится возможность использовать .ckpt и программа сама будет его конвертировать. 

Вот теперь мы пришли к одной из самых важных вещей, во круг которых строятся различные догадки и теории заговоров... А именно зависимость количества шагов тренировки (Training Steps) и скорости обучения (Learning Rate или LR).

Число шагов обучения ~= кол.во изображений * 100, у меня 8 изображений, поэтому оптимально было бы 800, но я округлил до 1000, потому что хочу. По скорости обучения ещё сложнее, но держим в голове несколько вещей, больше steps = меньше LR, и наоборот. Так же главное не перетренировать модель. Представьте этот процесс как работа по дереву. У вас есть бревно и вы хотите обтесать из него фигуру. Поставите слишком высокий LD и срежете слишком много кусков и модель будет перетренирована и бракована. А поставите если поставите слишком низкий LR, то представьте, как мелким скальпелем обтёсываете огромное бревно дуба до размера фигурки.

Пока тестил эту байду, знакомый кидал идеи на чё попробовать тренить, приложу ещё примеры DB и embedding под персонажа Макимы из Человека Бензопилы (Аниме), но её я уже делал на немного допилиной модели - Anything-V3.0, про неё уже сделали пост - https://joyreactor.cc/post/5385144

masterpiece, best quality, makimacmdb, makima \(chainsaw man\), 1girl, medium hair, pink hair, sidelocks, bangs, braid, braided ponytail, eyebrows visible through hair, orange eyes, ringed eyes, breasts, medium breasts, shirt, collared shirt, shirt tucked in, black pants, suit, business suit, formal jacket, long sleeves, necktie, black necktie, light smile, expressionless, looking at viewer, solo, gradient background, cinematic, filmic, telephoto, depth of field, lens distortion, lens flare, white balance, strobe light, volumetric lighting, dramatic lighting, little haze, ray tracing reflections, detailed, intricate, elegant, realistic
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, ((extra fingers)), ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((bad anatomy)), (((bad proportions))), ((extra limbs)), glitchy, ((extra hands)), ((mangled fingers)), dark skin, hair ornament , troubled eyebrows, big breast, yumemi riamu
Steps: 60, Sampler: Euler, CFG scale: 11, Seed: 1316407258, Size: 896x896, Model hash: e02601f3, Model: makimaANY, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0

DreamBooth + Embedding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

DreamBooth и без Embedding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Без DreamBooth и без Embedding

нейросети,нейромазня,Stable diffusion,NovelAI,DreamBooth,длиннопост

Как и писал выше, иногда Embedding лишний, некоторые результаты, лучше без него, некоторые с ним. Сутуативная хреновона, но лучше будет, чем нет.

КОНЕЦ.

Развернуть

Berry's Mix нагенерил сам нейроарт Stable diffusion красивые картинки длиннопост гайд Anime фэндомы Anime Unsorted ...art нейронные сети 

Гайд по созданию модели Berry's Mix

Berry's Mix,нагенерил сам,нейроарт,нейронные сети,Stable diffusion,красивые картинки,art,арт,длиннопост,гайд,Anime,Аниме,фэндомы,Anime Unsorted

 т> Л -с » / ¿t/Mc'ï 1 / JW ' '\ i/#7 ' TI In Al ■rr« , • л ■В • '¿W,Berry's Mix,нагенерил сам,нейроарт,нейронные сети,Stable diffusion,красивые картинки,art,арт,длиннопост,гайд,Anime,Аниме,фэндомы,Anime Unsorted

Berry's Mix,нагенерил сам,нейроарт,нейронные сети,Stable diffusion,красивые картинки,art,арт,длиннопост,гайд,Anime,Аниме,фэндомы,Anime Unsorted

Berry's Mix,нагенерил сам,нейроарт,нейронные сети,Stable diffusion,красивые картинки,art,арт,длиннопост,гайд,Anime,Аниме,фэндомы,Anime Unsorted

Berry's Mix,нагенерил сам,нейроарт,нейронные сети,Stable diffusion,красивые картинки,art,арт,длиннопост,гайд,Anime,Аниме,фэндомы,Anime Unsorted

Представляю твоему вниманию модель Berry's Mix.
Данная модель используется без VAE, и собирается вручную в Stable Diffusion во вкладке "Checkpoint Merger". Чтобы собрать данную модель необходимо предварительно скачать четыре модели (если нету), из которых будем лепить Berry's Mix.

1) Novel AI (стилистика рисования)
magnet:?xt=urn:btih:5bde442da86265b670a3e5ea3163afad2c6f8ecc
Если ты скачиваешь Novel AI впервые, скачать тебе необходимо только 
...\models\animefull-final-pruned\model.ckpt (4.2гб)
2) Zeipher F222 (тела, анатомия)
https://redirect.ai.zeipher.com/b1t50kc
3) Stable-diffusion-v1-5 (основа)
https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned.ckpt
4) r34_e4 (ты знаешь что это)
https://mega.nz/file/3JQ13JTZ#sdByZl4rXp7uxxIDutGs5GHg5RkGZfLrTA5wQEfkDJE
Неудобно скачивать с MEGA? Вот тут можно найти ссылки на торренты
https://rentry.org/sdmodels


Закидываем все скачанные модели в папку с моделями (stable-diffusion-webui\models\Stable-diffusion\)
Скачанную модель Novel AI, тот что model.ckpt можно для удобства переименовать в NovelAI.ckpt.
Переходим во вкладку Checkpoint Merge
В Primary model (A) - NovelAI.ckpt
В Secondary model (B) - f222.ckpt
В Tertiary model (C) - v1.5pruned.ckpt (Stable diffusion 1.5)
В Custom Name - TEMP
Ставим ползунок Multiplier (M) на 1, (максимально вправо).
В Interpolaion Method переключаем на Add difference

Запускаем нажатием на кнопку Run. Ждём.

Когда закончит, переходим во вкладку Setting и в самом низу жмём Restart Gradio and Refresh components.После перезагрузки, заходим на страницу Checkpoint Merger предварительно обновив страницу (F5).

Теперь:
В Primary model (A) - TEMP.ckpt
В Secondary model (B) - r34_e4.ckpt
В Tertiary model (C) - оставляем пустой
В Custom Name - Berry's Mix
Ставим ползунок Multiplier (M) - на 0.25
В Interpolaion Method оставляем на Weighted Sum

Запускаем нажатием на кнопку Run. Ждём. Когда закончит, переходим во вкладку Setting и в самом низу жмём Restart Gradio and Refresh components. Загружаем модель в меню chekpoint. Готово!

Я не скидываю готовую модель, так как лучше будет каждому поработать с вкладкой Checkpoint Merger. Там можно создавать невероятные миксы. Если данный контент понравится, создам гайды на другие миксы.
Развернуть
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме Stable diffusion длиннопост (+1000 картинок)