Результаты поиска по запросу «

stable diffusion модели

»

Запрос:
Создатель поста:
Теги (через запятую):



пидоры помогите нейронные сети Stable diffusion 

Требуется помощь со Stable Diffusion

Проблема такая: имеется видеокарта amd rx6750, а нейросетки больше любят Nvidea, искал аналоги на амд, пока использую SD WebUI DML Neuro, но у неё нет возможности использования LoRa.
Во время поисков нашёл вот такой вариант на DirectML https://github.com/lshqqytiger/stable-diffusion-webui-directml

Не запускается, так же просит нвидеа карту

Однако никакие настройки и внесение в аргументы мне не помогли. А использовать через процессор мне не хочется, слишком долго создает картинку.

Питон 3.10 и гит установлены. Брал информацию так же отсюда https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs 

Я плохо в таких делах разбираюсь, так что решение проблемы найти не смог. Взываю к тем кто более умён в данном вопросе

ИСПОЛЬЗОВАТЬ ТОЛЬКО В СЛУЧАЕ КРАЙНЕЙ НЕОБХОДИМОСТИ,пидоры помогите,реактор помоги,нейронные сети,Stable diffusion
Развернуть

StableDiffusion нейронные сети арт барышня art 

Stable Diffusion 3.5

Пощупать онлайн и без регистрации, но с ограничением по процессорному времени, а так же скачать:

https://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-large

https://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-large-turbo

"Сегодня мы выпускаем Stable Diffusion 3.5, наши самые мощные модели.

Stable Diffusion 3.5 Large: Эта базовая модель с 8 миллиардами параметров, превосходным качеством и оперативным соблюдением требований является самой мощной в семействе Stable Diffusion.

Stable Diffusion 3.5 Large Turbo: Усовершенствованная версия Stable Diffusion 3.5 Large генерирует высококачественные изображения с исключительной оперативностью всего за 4 шага, что значительно быстрее, чем Stable Diffusion 3.5 Large.

Stable Diffusion 3.5 Medium (будет выпущен 29 октября): Эта модель с 2,5 миллиардами параметров, улучшенной архитектурой MMDiT-X и методами обучения предназначена для работы «из коробки» на потребительском оборудовании, обеспечивая баланс между качеством и простотой настройки. Она способна генерировать изображения с разрешением от 0,25 до 2 мегапикселей."

Развернуть

нейронные сети Stable diffusion длиннопост 

Stable Diffusion 3 теперь доступна для скачивания и запуска локально

нейронные сети,Stable diffusion,длиннопост

Генерация по промту: Epic anime artwork of a wizard atop a mountain at night casting a cosmic spell into the dark sky that says "Stable Diffusion 3" made out of colorful energy

Теперь модель можно скачать и запустить локально (пока только Medium-версию). Разработчики пишут, что новая модель лучше понимает текст промта, более реалистичная в плане рук и лиц. А так же лучше запоминает детали на даже на небольших дата сетах. Одна из интересных фитч - генерация надписей.

Еще пишут что она "идеально подходит для работы на стандартных потребительских графических процессорах без снижения производительности". Но тут бы я поспорил, легко переварить 10Gb не каждая видеокарта сможет. На моей машине работает медленнее по сравнению с SDXL.

Скачать саму модель можно с civitai или huggingface. Запустить на данный момент только в comfyui.

Немного погонял локально, промты действительно понимает хорошо. Но модель "недообучена" - качество оставляет желать лучшего. Предыдущие версии тоже от этого страдали, но люди из комьюнити допиливали до вполне не плохих результатов.

Несколько примеров на модели SD3 Medium Incl Clips T5XXLFP8

Сложный промт с положением объектов на картинке указанием цветов (у прошлых моделей возникали проблемы):

Three bottles on a table in a kitchen. Bottles that look like cola. Left bottle is full of blue liquid with the number 1 on it. Middle bottle is full of white liquid with the number 2 on it. Right bottle is full of red liquid with the number 3 on it.

нейронные сети,Stable diffusion,длиннопост

Видно, что модель четко следует промту. Круто!

Попробуем с людьми: 

Forest in the background. Dark theme, sunset, look at at viewer, captured in the late afternoon sunlight. Photo of three 21 year old woman. Left woman is blonde with the number 1 on blue T-shirt. Middle woman is redhead with the number 2 on white T-shirt. Right woman is brown hair with the number 3 on red T-shirt. Wearing shorts

 ' 'Л <*щ: tC Y\ ^ МЦ , ,%f- > / « »®V .}?^■ ' . V » ‘ Y «Л • , г ‘У»7 f\ J¡«V >^|<1Л*П'*01Я^1^^^^Ея1. ájí&jrf * ?&"-Z1QH ¡г а*. "• a^2|^B|Uг> * * ¿jp v .уФ*ы г*Ьп|^НРЦН^&. . "J ль*,нейронные сети,Stable diffusion,длиннопост

Тут пришлось сначала описать лес на фоне, потому что иначе он выглядел как будто прифотошопленным. В остальном модель четко соблюдает номера, цвет футболок и волос. Раньше, без танцев с бубном, четко прописать нескольких разных типажей на одной картинке было почти не реально - детали сливались и получались клоны. А в новой версии достаточно просто описания. 

А что по надписям на картинке? Попробуем:

Neon sign with the text "Ты пидор"

нейронные сети,Stable diffusion,длиннопост

Видимо, русскую кодировку не завезли, но видно что модель старается, попробуем иначе:

Neon sign with the text "You are awesome!"

нейронные сети,Stable diffusion,длиннопост

Попробуем сгенерить котика:

A black cat walking along a street paved with stone.Close-up of a cat's face.

нейронные сети,Stable diffusion,длиннопост

Опять неплохо, хотя пришлось реролить несколько раз, что бы получить более-менее нормальный результат. Модель знает основы анатомии кота, но иногда больше похоже на детский рисунок.

Как на счет аниме?

Illustration anime, cartoon. 1woman, blue eyes, brown hair, dynamic angle, centered, full body photo. Street in the background

нейронные сети,Stable diffusion,длиннопост

Опять пришлось реролить несколько раз. Заметил, что если указывать больше деталей, картинка получается лучше.

Попробуем городской пейзаж:

Urban photography: houses, trees, cars, and peoples. the road goes from the bottom left to the right

PM л «с* l4^:v:v^ >.:;->r^ t^jgr jP, jBgf ж ■ W5p дОДЙ'^с^ «. ЩМч к VT'^Г ‘ 1 т :’•кйк№т1^^и » \ 1 «!* *. j|, ЛД ^ ; >,нейронные сети,Stable diffusion,длиннопост

Осторожно: если долго рассматривать картинку, можно подумать что у тебя инсульт...

Что мы имеем на данный момент? Пока реализм хромает... Не всегда с первого раза выходит что нужно. Лично я ожидал большего. Все те же проблемы с руками и склонностью к "плоскости" перспективы и объектов. 

Но есть ощущение, что модель действительно лучше понимает что от нее хотят. Будем надеется, что дообучение будет по силам сообществу, и мы увидим NSFW версию от авторов Juggernaut или Pony Diffusion.

ЗЫ: надеюсь теги эротики и аниме не нужны.

Развернуть

Anime фэндомы Stable diffusion нейронные сети Oppai Anime Ero Anime Unsorted 

My start on stable diffusion and ComfyUI

Anime,Аниме,фэндомы,Stable diffusion,нейронные сети,Oppai,Anime Ero,Взрослые Няшки,Anime,fandoms,Stable diffusion,neural networks,Oppai,Anime Adult,Anime Unsorted,Anime Unsorted
Развернуть

нейронные сети Stable diffusion без перевода booba 

Благодаря ИИ и Stable diffusion я наконец-то смог восстановить эту единственную сохранившуюся фотографию нашего покойного дяди.

Thanks to Al and Stable Diffusion , I was finally able to restore this only photo we had of our late uncle,нейронные сети,Stable diffusion,без перевода,booba
Развернуть

Отличный комментарий!

Он их своей грудью защищал
doctype doctype08.05.202300:44ссылка
+65.1

нагенерил сам нейронные сети Нейросетевые Барышни арт барышня art Stable diffusion реактор-тян реактор 

нагенерил сам,нейронные сети,Нейросетевые Барышни,арт барышня,арт девушка, art барышня, art girl,art,арт,Stable diffusion,реактор-тян,реактор

Перенос позы через ControlNet, затем по кругу то корректировка в Photoshop и полировка этого участка с помощью Inpaint. А что-то тупо было подкопирку перерисовано с исходного мема (руки), или с найденной в сети 3d модели (кеды), или с лого сайта.. и конечно проходился потом по этому участку с помощью Inpaint. Разве что только к тени Stable Diffusion не притрагивался, тк он постоянно какие-то образы там находил.    
Развернуть

нейронные сети гайд туториал StableDiffusion песочница 

Как перерисовать/раздеть любого персонажа с помощью Stable Diffusion

нейронные сети,гайд,туториал,StableDiffusion,песочница

Сегодня я расскажу о способе дорисовывать любые рисунки с помощью инструментов Stable Diffusion. Но прежде чем я начну, убедитесь что у вас установлена свежая версия Stable Diffusion webui от Automatic1111 + расширение ControlNet 1.1 со всеми нужными моделями.
Вот видео-инструкции (смотреть по порядку):

Установили? Тогда начинаем.

Часть 1. ControlNet Inpaint

Ни для кого не секрет, что в SD существует фича под названием inpaint - это, по сути, способ сгенерировать что-то поверх существующего изображения. В интерфейсе от Automatic1111 под inpaint'ом обычно подразумевают один из режимов img2img. Это хоть и мощный инструмент, но, всё же, недостаточно точный и контролируемый. Тут на помощь приходит ControlNet Inpaint и исправляет главный недостаток "классического" inpaint'а - игнорирование контекста. Впрочем, достаточно теории переходим к практике.

Итак, возьмём изображение, которое мы хотим отредактировать.

И сразу же уменьшаем/увеличиваем его до нужного разрешения:
В моём случае с 1500x1500 до 640x640. По опыту скажу, что лучший результат получается при размере меньшей стороны от 512 до 768 пикселей, а большая сторона при этом желательно меньше 1024 пикселей.

нейронные сети,гайд,туториал,StableDiffusion,песочница

Теперь открываем вкладку txt2img в web-gui, раскрываем ControlNet и переносим изображение на холст Unit 0, выбираем режим Inpaint и выставляем все нужные настройки (и включить не забудьте):

ControlNet Unit 0
ControlNet Unit 1
ControlNet Unit 2
ControlNet Unit3
Single Image
Set the preprocessor to (invert] If your image has white background and black lines.
D s *	-*
Q Enable	Low VRAM	Pixel Perfect CD Allow Preview	
Control Type			
All	Canny	Depth Normal OpenPose MLSD	Lineart

Теперь замазываем места, которые хотим перерисовать:

нейронные сети,гайд,туториал,StableDiffusion,песочница

В промпт пишем то, что хотим в результате видеть. Ещё раз, пишем не то, что нужно нового добавить, а то, каким хотим видеть финальную картинку:

1girl, naked, completely nude, (best quality, masterpiece:1.2)

Негативный промпт как обычно:
EasyNegative, badhandv5, (worst quality, low quality, normal quality:1.4)

Модель подбираем поближе к стилю рисунка (реалистичный/стилизованный). В моё случае это MeinaMix_v11-inpaint.

Параметры генерации:

Sampling method
DPM++2M SDE Karras
Restore faces	Tiling
Width
Sampling steps
Hires, fix 640
Batch count
n
640
Batch size,нейронные сети,гайд,туториал,StableDiffusion,песочница

Всё, можно нажимать Generate до тех пор пока не появится приемлемая картинка.

Столь хороший результат обеспечивается препроцессором inpaint_only+lama - он пытается дорисовать зону под маской с учётом "наружного контекста". Это же и обеспечивает генерацию правильного цвета.

Простой случай разобрали, переходим к чему-то посложнее:

Часть 2. Style transfer

Возьмём теперь другой рисунок попробуем повторить описанный выше процесс:

6
I
I PATREON.COM/CUTESEXYROBUTTS
PATREON.COM/CUTESEXYROBUTTS,нейронные сети,гайд,туториал,StableDiffusion,песочница

Мда, мало того, что поза поехала, так ещё и стиль оказался потерян. Одного ControlNet Inpaint тут недостаточно. Надо подключать дополнительные юниты.

Нам нужно решить 2 задачи:

Повторить существующий стиль рисункаСохранить силуэт

Для решения первой задачи будем использовать ControlNet reference и ControlNet T2IA - они оба позволяют копировать стиль с изображения-референса и как нельзя лучше работают в связке.

Возвращаемся к интерфейсу ControlNet'a. Копируем исходное изображение в Unit 1 и Unit 2. Настраиваем вот так:

0 Enable
Low VRAM
Pixel Perfect
Allow Preview
Control Type
All	Canny Depth Normal		OpenPose	MLSD
Lineart	SoftEdge Scribble	Seg	Shuffle	Tile
Inpaint	IP2P О Reference	T2IA		
Preprocessor
reference_only	И
Control Weight i	Starting Control о	Ending Control
1

Style Fidelity (only for

0 Enable
Low VRAM
Pixel Perfect
Allow Preview
Control Type
All	Canny	Depth	Normal	OpenPose	MLSD
Lineart	SoftEdge	Scribble
Inpaint	IP2P	Reference
Preprocessor
t2ia_style_clipvision
Control Weight i	Starting Control
Seg	Shuffle	Tile
None
controlnetT2IAdapter_t2iAdapterColor [c58d: /

(Все нужные модели скачать не забыли?)
А в качестве четвёртого ControlNet'a можно использовать любой, что позволяет сохранить форму: canny, depth, softedge, lineart - на ваше усмотрение и под конкретную задачу.

0 Image,нейронные сети,гайд,туториал,StableDiffusion,песочница

(Вот тут softedge)

Интересный факт: никто не запрещает отредактировать выход предпроцессора в фотошопе. Что-то убрать, что-то подрисовать. Вот где могут понадобиться навыки рисования.

Ладно, всё 4 юнита активны. Нажимаем Generate и:

PATREON.COM/CUTESEXYROBUTTS,нейронные сети,гайд,туториал,StableDiffusion,песочница

Это совсем не то, нужно!
Формы сохранены, но промпт будто проигнорирован. Что случилось? Я вам скажу что: сила ControlNet'а оказалась слишком велика. Stable Diffusion попытался во время генерации воссоздать рисунок-референс да ещё и плюс inpaint там подсунул белый цвет с фона!

Как с этим бороться? Нужно уменьшить эффект двух юнитов переноса стиля (reference и T2IA), но при этом нельзя сильно уменьшать их силу, иначе перенос стиля будет ослаблен. В общем, нужно воспользоваться настройкой Starting Control Step. Она отвечает за то, на какую долю шагов генерации придётся действие ControlNet'a.

Starting Control Step 0.5, например, означает, что первую половину шагов генерация будет опираться только на промпт, а со второй половины подключится уже наш ControlNet.

В общем, план такой: слегка понижаем Control Weight (сила) у стилевых юнитов (примерно до 0.9). После этого начинаем постепенно поднимать границу начала действия стилевых юнитов. Также имеет смысл подобным же образом немного ослабить действие Inpaint'a - позволяет в некоторых случаях исправить цвета.

После нескольких попыток (и усиление промпта) получаем вот такую задницу:

нейронные сети,гайд,туториал,StableDiffusion,песочница

Не идеально, но уже шаг в нужном направлении. На самом деле, сейчас можно (и нужно) уже именно это изображение сделать референсом. Другими словами, скопировать его во все 4 юнита и отталкиваться уже от него. И так сколько нужно раз. Пока не получится идеальный результат, либо ваша генерация окончательно не развалится.

Часть 3. img2img

Даже после получения хорошей генерации во вкладке txt2img имеет смысл несколько отшлифовать изображение уже через img2img inpaint. Главное не забудьте подключить 2 ControlNet'a для переноса стиля. Помните да, reference и T2IA.

Некоторые пункты в виде итога:

Ключ ко всему - это ControlNet (inpaint_only+lama) и ControlNet (reference_only, T2IA)
Генерацию лучше проводить поэтапно, чтобы было на что опереться в последующие шаги
Также имеет смысл разделять генерацию объектов нужной формы и затем покраску их в нужные цвета.
Подбирайте подходящие под задачу модели и/или лоры.
Не забудьте про параметры Control Weight, Starting Control Step, Ending Control Step. И про Control Mode в самом низу!

P.S. Хотел бы я чтобы кто-то обстоятельно протестировал этот метод и поделился бы потом результатами. Мне кажется, как-то можно добиться ещё большей близости к стилю оригинала, ведь задача состояла именно в этом.

Туториал закончен, теперь впечатления. Это охиренно мощная штука! Можно как угодно дорисовать любую картину, стиль вообще не важен, тем более что сейчас уже натренированы сотни моделей на все случаи жизни. Хоть скриншоты из мультфильмов/аниме, хоть картины маслом. Фильмы и фотографии вообще пройденный этап. Можно даже без использования inpaint'a просто сгенерировать сколько хочешь изображений с нуля, просто опираясь на единственный рисунок. А ведь ControlNet появился лишь в начале этого года. Короче, уже почти год прошёл, а всё это до сих пор кажется каким-то колдунством. Что грядущий день готовит...

Развернуть

Отличный комментарий!

а говорили что нейросети работу заберут
судя по этому туториалу теперь нужен Senior Stable Diffusion Manager чтобы только на жопу посмотреть )
imhosep imhosep01.08.202320:32ссылка
+32.6

нейросети StableDiffusion 

Марк Цукерберг от Stable Diffusion

Продолжаю знакомиться с разными моделями и вот сегодня открыл для себя Stable Diffusion, которая выдаёт потрясающие результаты. Доступ к ней ограничен, только по инвайту.

нейросети,StableDiffusion

нейросети,StableDiffusion

 J я =ü,нейросети,StableDiffusion

• ф • - Wjlî *% ¿LIM« • * í^4 * Е ,• ■ 1 Í V j j/ г s¥ > fl \^^fl №; V ИИ |Vi,нейросети,StableDiffusion

 ■ш-—- т~_ш± ■ 1 . » r ' ' /w. #• ’. ¿'.Ht i W//W 'K y,нейросети,StableDiffusion

нейросети,StableDiffusion

нейросети,StableDiffusion

Ещё мы БЕСПЛАТНО генерируем ваши запросы на похожих моделях, не все, только на наше усмотрение. Потому что своё железо.
Запрос писать по ссылке ниже и пожалуйста сразу на английском.
https://t.me/neural_infinity/26
Развернуть

Stable diffusion нейронные сети NSFW 

Возрадуйтесь обладатели 4 гиговых видеокарт и лентяи.

Продолжение поста https://joyreactor.cc/post/5307539 

Итак есть возможность заставить работать нейронку даже на 4 гиговых видеокартах, правда там будет слегка порезанный интерфейс но всё же.Версия для ленивых, с не самым приятным интерфейсом, зато просто запускаете exe и всё работает(если верить странице) https://grisk.itch.io/stable-diffusion-gui правда тут для 4 гиговых максимально возможное разрешение 256х512. Опять же если это действительно так. Но на 6 гиговых железно должно идти.

Ну и для любителей консольки и приятного интерфейса репа GitHub - basujindal/stable-diffusion
В ридми пишут, что 4 гиговые 2060 справляются с 512х512. Как устанавливать могу предположить, сам не ставил, поэтому обманывать не буду. Но опять можно пройти по гайду --K-DIFFUSION RETARD GUIDE (GUI)-- (rentry.org) так-как мой уже немного устарел, хотя все еще работает вероятно. 

Там пропустить пункты связанные с GFPGAN то есть 11 и удалить 36 строчку из скачанного environment.yaml. 4 пункт тоже не нужен, так-как будем использовать скрипты из репозитория basujindal/stable-diffusion. Как все установили скачиваем и закидываем из репы basujindal/stable-diffusion папку optimizedSD  в корень waifu-diffusion.

Запускать text2img: python optimizedSD/text2img_gradio.py


Запускать img2img: python optimizedSD/img2img_gradio.py

Ну и вот вам небольшие эксперименты img2img:

Prompt big boobs, erotic, illustration Mask Mode • Keep masked area Regenerate only masked area (Б output О,Stable diffusion,нейронные сети,NSFW

Арт нагло спиздил https://joyreactor.cc/post/5307995 отсюда

Развернуть

нейронные сети гайд Stable diffusion раздетые нейросеткой 

Как отредактировать любой рисунок с помощью нейросети Stable Diffusion. Подробный гайд

Будем считать, что вы уже установили и настроили Automatic1111's Stable Diffusion web-gui, а также скачали расширение для ControlNet'a и модели для него. Нам нужно будет лишь controlNet Inpaint и controlNet Lineart.

В интернете уже есть гайд по установке. И не один. Да хоть на том же YouTube.

Будем учиться редактировать на примере вот этой картинки:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Автор - Chaesu

Первым делом открываем фотошоп. Да, прежде чем загружать изображение в SD, его нужно подготовить. Проблема тут такая: SD 1.5 модели не могут нормально работать с изображениями больше 800 пикселей. Поэтому, выделяем в фотошопе вот такую область размером 600x900:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Не снимайте выделение сразу, оно ещё пригодится

Выделение есть, теперь Ctrl+C и вставляем скопированный кусок во вкладку txt2img в окошко ControlNet'а (в первые три, то есть вставляем три раза):

ControlNet vl.1.440 3 units ▼ ControlNet Unit 0 ControlNet Unit 1 ControlNet Unit 2 ControlNet Unit 3 Single Image Batch Multi-Inputs Set the preprocessor to [invert] If your image has white background and black lines. Q и ^ ^ Q Enable Low VRAM Pixel Perfect,нейронные сети,гайд,Stable

Вы ведь не забыли увеличить количество юнитов контролнета в настройках?

Теперь настраиваем сами юниты контролнета:
Unit 0:

Preprocessor reference_only Control Weight 0,95 Starting Control Step o,22 Ending Control Step Style Fidelity (only for "Balanced" mode) Control Mode Balanced My prompt is more important Q ControlNet is more important,нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Первый юнит будет отвечать за перенос стиля

Unit 1:

Preprocessor Model inpaint_only+lama - u controlnetllModelsJnpaint [be8bc0e< ▼ Control Weight 1 Starting Control Step o Ending Control Step i Control Mode Balanced Q My prompt is more important ControlNet is more important □,нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Второй отвечает за редактирование с сохранением контекста

Unit 2:

Preprocessor Model lineart_realistic - u controlnetllModelsJineart [5c23bl7d Control Weight 0,8 Starting Control Step o Ending Control Step Preprocessor Resolution Control Mode O Balanced My prompt is more important ControlNet is more important - 0 0,8 600,нейронные сети,гайд,Stable

Ну и третий юнит для контроля генерации

После этого нажимайте на кнопку предпросмотра:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

И скачивайте получившийся "негатив"

Single Image Batch Multi-Inputs,нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Можно поиграться с другими препроцессорами, но lineart_realistic обычно выдаёт лучший результат

Смело открываем его в фотошопе (в новой вкладке, старую пока не трогаем) и начинаем редактировать. Надо лишь убрать всё лишнее и обозначить контур того, что хотим получить. Вот как-то так:

Контролирующий лайн готов. Теперь очищаем ControlNet Lineart и вставляем наш "линейный рисунок". Так как на вход теперь на вход контролнету сам лайн, то нам не нужен препроцессор - ставим его на none.

Single Image Batch Multi-Inputs 0 Image (' /' ff l [/ / '! " Y Y i y /\. / 1 Start drawing ’i VJ 1 , У / \ L i • i xx • ! 1 Set the preprocessor to [invert] If your image has white background and black lines. D а ^ Q Enable Allow Preview Control Type Low VRAM Pixel Perfect Mask

Это всё ещё Unit 2

Осталось только нарисовать маску inpaint'а. Переходим в ControlNet Inpaint (Unit 1) и прямо тут в веб-интерфейсе закрашиваем те части, которые хотим перерисовать:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Про тень от одежды не забудьте

Осталось лишь написать промпт (и негативный промпт), выбрать параметры генерации (размер 600x900 не забывайте) и нажимать Generate до тех пор, пока не увидите приемлемый результат.
Например:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Главное что стиль далеко не уехал

Это изображение неплохо бы отправить в img2img inpaint, чтобы поправить мелкие недоработки, но сейчас просто копируем его в буфер, возвращаемся в фотошоп и вставляем в нужное место (выделение пригодилось).

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Сидит как влитая

Исправляется тем же образом:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Приемлемо

По тому же принципу делаем остальных

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Видите недоработки? Исправить их - это ваше домашнее задание

А вот параметры генерации:

(best quality, masterpiece:1.2), 1girl, short hair, (white bikini:1.1), standing, cowboy shot, white background, contrapposto,
Negative prompt: (worst quality, low quality, normal quality:1.3)
Steps: 28, Sampler: DPM++ 2M SDE Karras, CFG scale: 6, Seed: 2598121264, Size: 600x900, Model hash: 3867bda67e, Model: kizukiAlternative_v10, VAE hash: 2125bad8d3, VAE: kl-f8-anime2.ckpt, Clip skip: 2,

ControlNet 0: "Module: reference_only, Model: None, Weight: 0.95, Resize Mode: Crop and Resize, Low Vram: False, Threshold A: 0.5, Guidance Start: 0.22, Guidance End: 1, Pixel Perfect: False, Control Mode: ControlNet is more important, Hr Option: Both, Save Detected Map: True",

ControlNet 1: "Module: inpaint_only+lama, Model: controlnet11Models_inpaint [be8bc0ed], Weight: 1, Resize Mode: Crop and Resize, Low Vram: False, Guidance Start: 0, Guidance End: 1, Pixel Perfect: False, Control Mode: My prompt is more important, Hr Option: Both, Save Detected Map: True",

ControlNet 2: "Module: none, Model: controlnet11Models_lineart [5c23b17d], Weight: 0.8, Resize Mode: Crop and Resize, Low Vram: False, Guidance Start: 0, Guidance End: 0.8, Pixel Perfect: False, Control Mode: Balanced, Hr Option: Both, Save Detected Map: True", Version: v1.7.0

Модель для генерации логично выбирать близкую по стилю. Для не слишком реалистичных рисунков Kizuki Alternative почти идеальна.

Несколько советов:

- Уменьшайте исходное изображение заранее, облегчайте нейросети работу.

- Можно обойтись из без Lineart'а, и тогда сетка додумает форму самостоятельно.

- Если какие-то части получились хорошо, а какие-то нет, то просто перенесите результат во вкладки Reference и Inpaint и работайте уже с ним.

- Если исходное изображение слишком тёмное либо светлое, то модель сама по себе может не справиться и имеет смысл подключать затемняющую или осветляющую мини-модель (лору).

Развернуть
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме stable diffusion модели (+1000 картинок)