NovelAI
Подписчиков: 357 Сообщений: 400 Рейтинг постов: 5,299.8NovelAI нейронные сети нейромазня нагенерил сам art барышня art Нейросетевые Барышни
Попробовал нагенерить эльфиек. модель - Anything-V3.0-pruned
все еще есть косяки с руками, но значительно меньше. Ну и с ушами иногда)
NovelAI нейронные сети Stable diffusion нейроарт art нагенерил сам art барышня
Ну что, прошла неделя генераций с прошлого поста, и вроде даже что-то начало получаться. А с китайской дообученной моделью выходят прям совсем классные арты, но основной упор сделал на обучение себя (ха!) Inpaint'ингу. Попутно ещё хотелось научиться делать запросы так, чтобы нейросетка не путалась в цветах. Идея была сделать темнокожую тянку с белыми колготками и поверх этого чёрный леотард. Ах да, ещё красные волосы. Если кратко, фиг что получилось, но в итоге я дрочил этот арт, пока не отполировал самые отстойные места и теперь его можно назвать хотя бы хорошим артом, который не стыдно выложить на реакторе. Правда, некоторые места типа швов пришлось замазывать в фотошопе. После всего процесса заапскейлил через Topaz Gigapixel, теперь картинка 3072х2048. В общем, прошу:
Мне дико нравится эта китайская дообученная модель. Я просто вбил made in abyss, maspterpiece, ultra realistic и получил сразу классный набор артов, причём она сразу узнала персонажа.Да даже если просто вбить nsfw, masterpiece, best quality и раза три-четыре прогнать будет вполне достойный результат:
Короче юзайте её по ссылке с того поста, дико годная штука.нейросети нейромазня Stable diffusion NovelAI DreamBooth длиннопост
Тренируем модели через DreamBooth на конкретные образы.
Здравствуйте мои любители нейронного колдунства и прочих искуственно интелектуальных утех. Сегодня мы научимся тренировать уже готовые модели на образы которые мы хотим. Локально на нашем ПК без всяких Google Colab и Runpod.
Если я где то накосячил, поправьте в коментариях.
ДИСКЛЕЙМЕР! БУДЕТ ОЧЕНЬ МНОГО ТЕКСТА. Этот способ тренировки через DreamBooth подразумевает, что у вас в гробу установлена карточка (Nvidia скорее всего только поддерживается) с минимум 8-10 ГБ видеопамяти. Тренировка сетки уже куда более ресурсожрущий процесс, чем просто генерация картиночек. Ранее DreamBooth требовал минимум 24ГБ памяти. Так что пока я нашёл нужные материалы, проверил их и понял, как с этим работать, прошла не одна неделя... Стояла бы у меня 3090, то этот гайд вышел бы ещё в середине октября. но если всё же хочется побаловаться, то можно воспользоваться облачными google colab и runpod. Но я так же затрону гиперсети (Hypernetworks), результаты с ними куда менее презентабельные чем через dreambooth, но можно запустить на карточках попроще. Если вы всё же железо-бетонно готовы следовать дальше, прошу.
И так, продолжим. DreamBooth модель можно натренировать на свою рожу, свою собаку, любимую табуретку, или какого нибудь персонажа.
В данном посте я буду работать на модели NAI (NovelAI я буду сокращать в дальнейшем) ибо буду тренить на нашу Реактор-тян. Если хотите сделать своё лицо или, что то из нашего бренного мира то подойдёт обычная модель Stable Diffusion 1.4
В конце будет небольшой Q&A и заметки, дабы всю (почти) воду и рассуждения отградить от основной информации.
Я разобью гайд на несколько частей. Тренировка DreamBooth и тренировка Embeddings с Hypernetworks.
DreamBooth:
Знаю, что уже появился спобоб тренить DB (DreamBooth я буду сокращать в дальнейшем) через webui stable diffusion от AUTOMATIC1111 в виде загружаемого плагина, но чёрт, вы хоть видели сколько там настроек? Я устану вам объяснять каждую и вы умрёте от духоты, поэтому я выбрал более дружелюбное, отдельно загружаемое приложение - DreamBooth-gui - https://github.com/smy20011/dreambooth-gui скачиваем и устанавливаем его по инструкции приложеной на Гитхабе, не буду тут расписывать ибо и так много текста.
Запускаем приложение и видим первое, что нас просят сделать, а именно загрузить набор изображений на который мы хотим натренировать модель. Делаем их в разрешении 512x512, где надо фотожопим лишнее.
Как только залили изображения, я сделал 8шт, переходим на следующую вкладку Confin Trainer, здесь мы зададим нужные параметры и настройки. Рассуждения о зависимости некоторых параметров от других, пока где-то на уровне теории заговоров, но основные зависимости я объясню дальше.
И так, для начала выбираем модель. По умолчанию нам предложит CompVis SD v1.4, который оно подкачает с hugging face. Но сегодня я работаю с NAI поэтому указываю путь до папки с моделью. Сейчас я на версии программы v0.1.8. и она требует, что бы модель была конвертирована из .ckpt в diffusers. Вот ссылка на мою конвернутую модель NAI - https://drive.google.com/file/d/1BnZyUb9C5wjz7Lcp1Dn8JidZLQ4taQEy/view?usp=share_link
Далее указываем Instance prompt, это должно быть уникальное слово которого не должна знать модель, то есть никаких boy, girl, и имён персонажей которых может знать модель. В дальшейшем это название мы будем указывать среди промптов, что бы модель на это тригеррилась и генерила уже с учётом натренированности этого концепта.
Class prompt указываем ёмко, кратно, что мы тренируем. У нас один женский персонаж и раз уж модель NAI тренилась на датасете danbooru, то я и укажу женский тег от туда, а именно 1girl.
Training Steps я выставлю 1000, а Learning Rate 5e-6, но это крайне запутанные настройки, о них я побольше размусолю ниже в разделе с водой и по ходу текста.
Аргументы не трогаю.
Отлично, переходим к разделу тренировки, здесь нас попросит вставить наш Hugging Face Token. По идеи это нужно только если мы качаем модель SDv1.4 или прочую с Hugging Face, а у нас она локально на пк уже стоит, но всё равно просит, поэтому регаемся там и идём в настройках раздел с токенами https://huggingface.co/settings/tokens и создаём токен на WRITE и вставляем его в наше поле. Прописываем папку куда будут выгружаться все файлы после и проверяем, что бы стояла галочка, что бы модель генерилась потом в .ckpt файл в нашей папке вывода.
Иии жмём старт! И так теперь запасаемся терпением, можете заварить чай, помыться, выйти на улицу, потрогать траву, сходить в магазин и т.д, ибо процесс первого запуска НЕВЕРОЯТНО ДОЛГИЙ. Серьёзно, я сам в первый раз думал, что у меня, что то зависло. Минут 30 только оно подгружало нужные файлы, и убедитесь, что у вас на диске есть ещё место, ибо пару десятков ГБ на нём, этот процесс забьёт. Если увидите, что ошибок не вылезно, в папке \AppData\Roaming\smy20011.dreambooth были сгенерены картинки референсы по классовому промпту и вы не словили ошибку о нехватке видеопамяти (будет у многих вангую) то поздравляю, у вас пойдёт тренировка, и вы увидите, как у вас будут лететь надписи Steps ****% |▋▋▋▇| ***/1000 [**:** < 00:00, *.**s/it, loss=0.***,lr=5e-6]
На тренировку модели в 1000 шагов моей RTX 3080 потребовалось почти пол часа. Чтож, когда увидим сообщение о том, что всё готово, заходим в папку вывода, и переименовываем как хотим и переносим .ckpt файл в папку с моделями нашего stable diffusion.
Запустите SD, загрузите модель. Проверьте результаты, всё ли выглядит так, как должно, у меня получилось... приемлимо...
joyreactorchan, 1girl, orange hair, medium hair, antenna hair, blue eyes, freckles, foxy ears, white bardot top, orange overalls, orange collar with bell, gold hairpin, gold buckles
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, furry
Steps: 60, Sampler: Euler, CFG scale: 11, Seed: 3985740085, Size: 960x960, Model hash: e02601f3, Model: joyreactor, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0
Модель DreamBooth
Чистая NAI
Ну вроде неплохо. Но можно лучше.
У меня выходили и более презентабельные модели, чего стоит модель с моей рожей, что генерит меня с шансом 50%, а в остальных случаях Иисуса либо Джареда Лето либо двухголовую ебаку...
Вот пример с DB, а вот чистая NAI. Ну думаю, я бы мог вопроизвести похожий результат и без DB, но потребовалось бы куда больше промптов и попыток. Тем не менее, DB приближает качество и иполнение результатов, к тем, на какие мы тренировали, поэтому если тренируете на лицо, то оно даст намного чёткие и предсказуемые результаты, чем просто по запросу "лохматый бородатый мужик"
Если хотим закрепить результат и возможно улучшить, то рекомендую потренить и Textual Inversion - https://huggingface.co/docs/diffusers/training/text_inversion Это крошечная часть нейросети обученая на наборе картинок. требует поменьше ресурсов для тренировки, чем DreamBooth. С её помощью удобно воспроизодить стили и какие то объекты. Я потреню на том же датасете картинок, что и DB.
Тренировка Embeddings (Textual Inversion)
Идём в раздел SD webui который называется Train, и в первом подразделе Create embedding начинаем заполнять пункты.
Name - просто имя файла и в дальшейшем мы будем писать это название среди промптов, что бы задействовать нужный embedding. Поэтому я использую название, то же, что и у инстанс промпта в DB, что бы тригеррить их обоих разом.
В Initilization text вписываем описание персонажа, я описал его более подробно, ибо на реактор-тян оно почему то ловит затуп и генерит совсем шлак потом. А так обычно то же, что и class prompt в DB. Число векторов на токен я выставил 8, хотя чем больше это число, то тем больше примеров картинок лучше подготовить, но остановлюсь на этом.
Теперь идём в Preprocess images, вводим путь до папки с изображениями и туда, куда их выгрузит. Ставим галочку на Use deepbooru for caption, не уверен, будет ли у вас эта функция, если нету или не работает, поставьте в аргументах запуска SD аргумент "--deepdanbooru", и тогда точно всё будет ок. Эта функция создаст текстовое описание для каждого изображения в формате тегов с danbooru, так сетка лучше обучится. Если трените не на NAI моделе, а что то реалистичное, то советую использовать, Use BLIP for caption, создаст промпты как если бы их писали для работы с обычной моделью SD 1.4... Так же уделите время и вручную проверьте КАЖДЫЙ созданый текстовый документ, и сверьте его с картинкой, постарайтесь удалить ненужные промпты или добавить, то что считаете нужно, не всегда оно создаёт описание корректно. Да это муторно, но стоит без этого может натренить сетку не на то, что мы желаем.
И последний подпункт Train. Тут внимательно, можно ошибиться с пунктами и кнопками. Я помечу на скрине те пункты, которые мы трогаем, остальные игнорьте.
В embeddings выбираем наш созданый, в dataset directory указываем путь, куда мы выгружали изображения уже с описаниями, в prompt template file указываем путь до файла шаблона по которым оно будет трениться, я создал свой файлик, в котором внутри написано только [filewords] , прямо с квадратными скобками, это будет задействовать описания изображений которые мы создали раньше.
Save an image to log и save a cope of embedding, это параметры отвечающие за тестовое создание изображения на данном этапе тренировки и сохранинии текущего результата на момент шагов. Я генерирую изображение каждые 500 шагов и сохраняю прогресс каждые 1000, да бы проверить не произошла ли перетренировка модели, да бывыет и такое, её можно перетренировать, об этом после гайда...
И надеюсь вы не подумали, что я пропустил пункт с Embedding Learning Rate и Max Steps, то нет. Вот тут та же шляпа, что и раньше, и надо подбирать соотношения. В этот раз будем создавать поэтапно.
Для начала мы проведём тренировку на 200 шагов и Learning Rate 0.02, после увеличим число шагов до 1000 и уменьшим LR до 0.01, потом 2000 шагов и LR 0,005, 3000 и 0.002, 4000 - 0.0005 и в конце выставим 20000 шагов и скорость обучения на 0.00005. Чё страшно, запутались? Кароче, шляпа в том, что бы сетка не переобучилась, так мы её постепенно полируем, подробнее об этом после гайда в разделе с разными мыслями.
Вот выставили 200 шагов и 0.02 скорость, она прогонит по этим параметрам и закончит, не закрываем ничего, меняем параметры на следующие по списку, 1000 шагов и скорость 0.01 и опять жмём Train Embedding и опять идёт тренировка уже дальше с новыми данными. И т.д до конца. 20000 шагов золотая середина как по мне. У меня на это уходит около полутора часа, побольше, чем на тренировку DreamBooth, результат не будет сверх разиться, но будет чуть более в нужном нам направлении.
Вот примеры, того что по итогу вышло.
masterpiece, best quality, joyreactorchan, 1girl, orange hair, medium hair, antenna hair, blue eyes, freckles, foxy ears, white bardot top, orange overalls, orange collar with bell, gold hairpin, gold buckles, solo, standing, upper body
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, furry, portrait
Steps: 60, Sampler: Euler, CFG scale: 11, Seed: 370310831, Size: 768x768, Model hash: e02601f3, Model: joyreactor, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0
DreamBooth + Embedding
DreamBooth без Embeding
И без DreamBooth и без Embedding на чистом NAI
Ну Embedding иногда подтягивает, некоторые результаты, иногда может быть лишним. Довольно ситуативная и спорная вещь, но вот на DreamBooth сразу узнаётся Реактор-тян, нежели на обычной NAI с теми же хорошо подобранными промптами.
И да, знаю, что вероятно будут просить уже готовую модель, так что держите ссылки на модель на Реактор-тян и готовый Embedding:
https://drive.google.com/file/d/1s2z1grZvNdVxkw5uHJQIWKecgeV39tWp/view?usp=sharing
https://drive.google.com/file/d/1pft2NvHGi5xaJ61LctRc2Lf4aixHke0Z/view?usp=sharing
Лучше пусть кто то забэкапит, а то мало ли я буду облако чистить.
Hypernetworks
Если не получилось натренить DreamBooth, то попробуйте гиперсети. Тоже прикольные результаты можно получить, если постараться.
Тренить гиперсеть на реактор-тян я не буду, поэтому опишу как делал ранее с другими вещами. Если желаете ознакомиться с материалом, по которому я и сам тренировался, прошу - https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/2670
Процесс тренировки схож с тренировкой embeddings.
Так же в заходим в раздел Train, и уже в подпункт Create Hypernetwork. Имя гиперсети пишем какое хотим, без разницы, модули 768 320 640 1280 оставляем как есть.
Теперь тут свои завертоны пойдут, просят ввести структуру слоёв гиперсети:
Для широких гиперсетей: 1, 3 ,1 или 1, 4 ,1
Для глубоких гиперсетей: 1, 1.5, 1.5, 1 или 1, 1.5, 1.5, 1.5, 1 или 1, 2, 2, 1
Широкие: подходят для запоминания новых вещей, таких как конкретное животное, человек или объект.
Глубокие: подходят для обобщения вещей, таких как стили.
Поэтому исходите из этого, для реактор-тян я бы выбрал 1, 3, 1
Следующий пункт, select activation function of hypernetwork:
Для аниме (NAI, Waifu и т. д.): Selu, Gelu, mish
Для фотографий: Relu, swish, mish,leakyrelu, rrelu
Теперь Select Layer weights initialization. Для аниме ставим xaviernormal. Если фото и т.д то по умолчанию normal.
Остальные галочки ниже необязательны.
Потом так же подготавливаем изображения как и с embeddings, это я не буду повторять и переходим сразу в Train.
Выбираем так же как и при тренировке embedding путь до шаблона, папку с датасетом из наших картинок с текстом, сохранение результатов и картинок.
Теперь выбираем нужную гиперсеть в выпадающем списке Hypernetworks. Изменять будем раздел Hypernetwork Learning rate, а не Embedding Learning rate, как раньше и жать будем на Train Hypernetwork, а не Train Embedding.
Вот примеры хороших соотношений последовательностей Steps к LR:
Для обычных людей - 0.00005:100, 0.000005:1500, 0.0000005:10000, 0.00000005:20000
А вот для извращенцев - 0.00005:100, 0.000005:1500, 0.0000005:2000, 0.00005:2100, 0.0000005:3000, 0.00005:3100, 0.0000005:4000, 0.00005:4100, 0.0000005:5000, 0.00005:5100, 0.0000005:6000, 0.00005:6100, 0.0000005:7000, 0.00005:7100, 0.0000005:8000, 0.00005:8100, 0.0000005:9000, 0.00005:9100, 0.0000005:10000, 0.000005:10100, 0.00000005:11000, 0.000005:11100, 0.00000005:12000, 0.000005:12100, 0.00000005:13000, 0.000005:13100, 0.00000005:14000, 0.000005:14100, 0.00000005:15000, 0.000005:15100, 0.00000005:16000, 0.000005:16100, 0.00000005:17000, 0.000005:17100, 0.00000005:18000, 0.000005:18100, 0.00000005:19000, 0.000005:19100, 0.00000005:20000. Этот вариант выглядит монструозно, но я его тестировал лично, и довольно хорошо работает при условии, что вы подобрали хорошие примеры изображений и текстовые описания к ним.
И так же поэтапно треним как и embedding... ВСЁ!
ВОДА и Q&A!!!
Ахренеть, как буд-то по новой пишу дипломную, но только с надеждой в том, что кому то это поможет и он воспользуется этим материалом, либо же просто покекает с того, что я потратил на это несколько недель, начиная от поиска нормального способа запуска DreamBooth и заканчивая десятком часов на попытки разобраться в особенностях и нюансах, ну и этот текст я пишу уже где то часов 6 нонстоп, набралось уже 2 c половиной тысячи слов! серьёзно, надо хоть воды налить себе, ха отличная шутка.
1)Q: Почему так сложно?
A: А кому легко?
2)Q: Можно ли было уместить это в 5 абзацев на 500 слов в общем?
A: Не знаю, пишу как умею, кто умер от духоты и захлебнулся в воде, простите)
3)Q: У меня видеокарта ******, у меня заработает?
A: Не знаю. Скорее всего на AMD, вообще никак. Если у вас есть в карте тонна видеопамяти, то должно. Либо попробуйте запустить, через Google Colab, Runpod и прочие облака с арендой видеокарт и работы с их мощностями. Я НЕ БУДУ ПИСАТЬ ГАЙД ПО КОЛАБУ, НЕЕЕЕТ!
4)Q: Не надоело ли писать вопросы и ответы?
A: Да, чёт устал, задавайте в комментариях, отвечу как смогу.
Теперь ВОДА и прочие размусоливония которых, я старался избегать в основной части гайда.
Подойдите к этапу подбора изображений для тренировки максимально отвественно и серьёзно, ибо от того какие изображения вы скормите, во многом будет зависить результат. Так же качество > колличество, будет хорошо если вы задействуете 10 годных примеров, нежели 30 посредственных. Я стараюсь выдерживать единый стиль изображений, если одна картинка будет от карандаша, другая 3D CGI, а третья в стиле Пикассо, то выйдет так себе и выйдет мешанина из этого всего. Если тренирую персонажа, то стараюсь делать акцент на лице, тело можно будет и промптами задать, но вот получить нужное лицо сложно, ну за этим и нужен DB.
Во многом из за конвертации .ckpt в diffusers я неделю ломал голову, ибо обычным скриптом предназначеным для этого у меня не выходило, но как видите удалось, а именно при помощи гуглколаба от TheLastBen. Необходимо было залить модель в колаб, прогнать через его скрипт, и выгрузить результат себе на гугл диск. В скорой версии Dreambooth gui v.0.1.9. появится возможность использовать .ckpt и программа сама будет его конвертировать.
Вот теперь мы пришли к одной из самых важных вещей, во круг которых строятся различные догадки и теории заговоров... А именно зависимость количества шагов тренировки (Training Steps) и скорости обучения (Learning Rate или LR).
Число шагов обучения ~= кол.во изображений * 100, у меня 8 изображений, поэтому оптимально было бы 800, но я округлил до 1000, потому что хочу. По скорости обучения ещё сложнее, но держим в голове несколько вещей, больше steps = меньше LR, и наоборот. Так же главное не перетренировать модель. Представьте этот процесс как работа по дереву. У вас есть бревно и вы хотите обтесать из него фигуру. Поставите слишком высокий LD и срежете слишком много кусков и модель будет перетренирована и бракована. А поставите если поставите слишком низкий LR, то представьте, как мелким скальпелем обтёсываете огромное бревно дуба до размера фигурки.
Пока тестил эту байду, знакомый кидал идеи на чё попробовать тренить, приложу ещё примеры DB и embedding под персонажа Макимы из Человека Бензопилы (Аниме), но её я уже делал на немного допилиной модели - Anything-V3.0, про неё уже сделали пост - https://joyreactor.cc/post/5385144
masterpiece, best quality, makimacmdb, makima \(chainsaw man\), 1girl, medium hair, pink hair, sidelocks, bangs, braid, braided ponytail, eyebrows visible through hair, orange eyes, ringed eyes, breasts, medium breasts, shirt, collared shirt, shirt tucked in, black pants, suit, business suit, formal jacket, long sleeves, necktie, black necktie, light smile, expressionless, looking at viewer, solo, gradient background, cinematic, filmic, telephoto, depth of field, lens distortion, lens flare, white balance, strobe light, volumetric lighting, dramatic lighting, little haze, ray tracing reflections, detailed, intricate, elegant, realistic
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, ((extra fingers)), ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((bad anatomy)), (((bad proportions))), ((extra limbs)), glitchy, ((extra hands)), ((mangled fingers)), dark skin, hair ornament , troubled eyebrows, big breast, yumemi riamu
Steps: 60, Sampler: Euler, CFG scale: 11, Seed: 1316407258, Size: 896x896, Model hash: e02601f3, Model: makimaANY, Denoising strength: 0.7, Clip skip: 2, First pass size: 0x0
DreamBooth + Embedding
DreamBooth и без Embedding
Без DreamBooth и без Embedding
Как и писал выше, иногда Embedding лишний, некоторые результаты, лучше без него, некоторые с ним. Сутуативная хреновона, но лучше будет, чем нет.КОНЕЦ.