дора дипфейк
»нейросети deep fakes дубляж
Британский стартап выпустил программу, позволяющую изменять мимику актеров в кино. Так, чтобы она совпадала с дубляжом
Британская компания Flawless выпустила программу TrueSync, которая с помощью машинного обучения синхронизирует дубляж с мимикой актеров. Это значит, что движения губ и лицевых мышц людей на экране будут совпадать с тем, что говорят актеры озвучания
Нейросети сами проанализируют мимику актеров и подстроят под дубляж, заменив их лица на дипфейк. Выглядеть это будет так, будто, к примеру, Роберт Де Ниро изначально во время съемок произносил свои реплики на немецком, а не на английском, как показано в проморолике TrueSync:
гифки спецэффекты нейросети
Будущее наступило, старик
Отличный комментарий!
технологии до чего техника дошла дипфейки
Больше дипфейков хороших и разных
Новая технология для создания дипфейков CihaNet
Китайская исследовательская группа и исследователи из США в сфере технологий искусственного интеллекта разработали новую технологию для создания дипфейков CihaNet. Предположительно, разработка может превзойти все предыдущие подходы.
Новый метод может выполнять смену лиц без необходимости исчерпывающего сбора и курирования больших выделенных наборов данных и обучения их в течение недели только для одной личности. Новые разработанные модели обучались на двух популярных наборах данных о знаменитостях на одном графическом процессоре NVIDIA Tesla P40 в течение примерно трех дней.
Новый подход устраняет необходимость грубо внедрять образ человека в целевое видео, что часто приводит к характерным артефактам. Так называемые hallucination maps («карты галлюцинаций») используются для более глубокого смешивания визуальных аспектов, потому что система отделяет идентичность от контекста гораздо эффективнее, чем существующие методы. Самое известное в настоящее время программное обеспечение для дипфейков DeepFaceLab и конкурирующий форк FaceSwap выполняют сложные и часто вручную настраиваемые рабочие процессы для определения того, в какую сторону наклонено лицо, какие препятствия находятся на пути, и пр. В отличие от данных технологий, CihaNet не требует обращения лиц прямо в камеру для извлечения и использования полезной идентификационной информации.
Новая архитектура напрямую использует «контекстную» информацию для самого процесса преобразования посредством двухэтапной операции каскадной адаптивной нормализации экземпляра (C-AdaIN), которая обеспечивает согласованность контекста (то есть кожи лица и окклюзий) ID-соответствующие области.
Исследователи обучили четыре модели на двух очень популярных и разнообразных наборах данных открытых изображений ( CelebA-HQ и NVIDIA Flickr-Faces-HQ Dataset ), каждый из которых содержит 30 тыс. и 70 тыс. изображений соответственно.
Затем эксперты отрендерили серию случайных обменов между тысячами личностей, представленных в наборах данных, независимо от того, были ли лица похожими или даже совпадающими по полу, и сравнили результаты CihaNet с результатами четырех ведущих фреймворков дипфейка: FaceSwap , FaceShifter , FSGAN и SimSwap .
По словам исследователей, новая модель превзошла всех конкурентов. При оценке результатов использовались три показателя: структурное сходство, ошибка оценки позы и точность извлечения идентификатора, которая вычисляется на основе процента успешно извлеченных пар.
Отличный комментарий!