Результаты поиска по запросу «

Stable Diffusion установка

»

Запрос:
Создатель поста:
Теги (через запятую):



Stable diffusion нейронные сети гайд ControlNet automatic1111 

Правильная установка ControlNet в SD webui

Хочу поделиться с вами моим постом с github и reddit.

Я потратил много времени на поиск и решение проблемы с ошибками при установке ControlNet, десятки раз переустанавливал webui и перечитал море информации на github. Пока что данный способ самый рабочий из всех и позволяет обойти ошибки установки mediapipe, OSError и permissions при установке ControlNet.

Сперва я рекомендую сделать чистую установку SD webui, но если такой возможности нет, то удалите расширение controlnet в папке extensions и удалите папку venv, после чего запустите webui-user.bat, дождитесь пока webui восстановит удалённые папки и загрузит все файлы, затем закройте webui.

Перейдите в папку с SD webui, щелкните на строку с директориями и введите "cmd", нажмите enter.

stable-diffusion-webui X + <- ^ G Щ @ Создать ' LO ГО ® Й 0 I'l' Сортировать v = П| i f > 4 6 I A Имя Дата изменения Тип •git 29.03.2024 22:37 Папка с файлами .github 29.03.2024 22:37 Папка с файлами _pycache_ 29.03.2024 22:56 Папка с файлами config_states 29.03.2024 22:56 Папка с

Откроется командная строка и вы увидите путь к вашей папке с webui.

Теперь вам нужно поочередно вводить эти команды, терпеливо дожидаясь завершения всех операций (я выделил команды жирным текстом):

F:\stable-diffusion-webui>venv\scripts\activate.bat

(venv) F:\stable-diffusion-webui>pip install mediapipe

(venv) F:\stable-diffusion-webui>pip install svglib

(venv) F:\stable-diffusion-webui>pip install fvcore

(venv) F:\stable-diffusion-webui>pip install "opencv-python>=4.8.0"

(venv) F:\stable-diffusion-webui>pip install https://github.com/Gourieff/Assets/raw/main/Insightface/insightface-0.7.3-cp310-cp310-win_amd64.whl --prefer-binary

(venv) F:\stable-diffusion-webui>deactivate

Готово. Теперь запустите файл webui-user.bat и установите/переустановите расширение controlnet. Сообщения об ошибках больше не должны появляться и расширение будет работать нормально. Если и появятся какие-то ошибки, то можете их игнорировать либо написать в комментариях, я попробую разобраться.
Развернуть

пидоры помогите нейронные сети Stable diffusion 

Требуется помощь со Stable Diffusion

Проблема такая: имеется видеокарта amd rx6750, а нейросетки больше любят Nvidea, искал аналоги на амд, пока использую SD WebUI DML Neuro, но у неё нет возможности использования LoRa.
Во время поисков нашёл вот такой вариант на DirectML https://github.com/lshqqytiger/stable-diffusion-webui-directml

Не запускается, так же просит нвидеа карту

Однако никакие настройки и внесение в аргументы мне не помогли. А использовать через процессор мне не хочется, слишком долго создает картинку.

Питон 3.10 и гит установлены. Брал информацию так же отсюда https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs 

Я плохо в таких делах разбираюсь, так что решение проблемы найти не смог. Взываю к тем кто более умён в данном вопросе

ИСПОЛЬЗОВАТЬ ТОЛЬКО В СЛУЧАЕ КРАЙНЕЙ НЕОБХОДИМОСТИ,пидоры помогите,реактор помоги,нейронные сети,Stable diffusion
Развернуть

Stable diffusion нейронные сети NSFW 

Возрадуйтесь обладатели 4 гиговых видеокарт и лентяи.

Продолжение поста https://joyreactor.cc/post/5307539 

Итак есть возможность заставить работать нейронку даже на 4 гиговых видеокартах, правда там будет слегка порезанный интерфейс но всё же.Версия для ленивых, с не самым приятным интерфейсом, зато просто запускаете exe и всё работает(если верить странице) https://grisk.itch.io/stable-diffusion-gui правда тут для 4 гиговых максимально возможное разрешение 256х512. Опять же если это действительно так. Но на 6 гиговых железно должно идти.

Ну и для любителей консольки и приятного интерфейса репа GitHub - basujindal/stable-diffusion
В ридми пишут, что 4 гиговые 2060 справляются с 512х512. Как устанавливать могу предположить, сам не ставил, поэтому обманывать не буду. Но опять можно пройти по гайду --K-DIFFUSION RETARD GUIDE (GUI)-- (rentry.org) так-как мой уже немного устарел, хотя все еще работает вероятно. 

Там пропустить пункты связанные с GFPGAN то есть 11 и удалить 36 строчку из скачанного environment.yaml. 4 пункт тоже не нужен, так-как будем использовать скрипты из репозитория basujindal/stable-diffusion. Как все установили скачиваем и закидываем из репы basujindal/stable-diffusion папку optimizedSD  в корень waifu-diffusion.

Запускать text2img: python optimizedSD/text2img_gradio.py


Запускать img2img: python optimizedSD/img2img_gradio.py

Ну и вот вам небольшие эксперименты img2img:

Prompt
big boobs, erotic, illustration
Mask Mode
• Keep masked area	Regenerate only masked area
(Б output О,Stable diffusion,нейронные сети,NSFW

Арт нагло спиздил https://joyreactor.cc/post/5307995 отсюда

Развернуть

нейронные сети гайд туториал StableDiffusion песочница 

Как перерисовать/раздеть любого персонажа с помощью Stable Diffusion

нейронные сети,гайд,туториал,StableDiffusion,песочница

Сегодня я расскажу о способе дорисовывать любые рисунки с помощью инструментов Stable Diffusion. Но прежде чем я начну, убедитесь что у вас установлена свежая версия Stable Diffusion webui от Automatic1111 + расширение ControlNet 1.1 со всеми нужными моделями.
Вот видео-инструкции (смотреть по порядку):

Установили? Тогда начинаем.

Часть 1. ControlNet Inpaint

Ни для кого не секрет, что в SD существует фича под названием inpaint - это, по сути, способ сгенерировать что-то поверх существующего изображения. В интерфейсе от Automatic1111 под inpaint'ом обычно подразумевают один из режимов img2img. Это хоть и мощный инструмент, но, всё же, недостаточно точный и контролируемый. Тут на помощь приходит ControlNet Inpaint и исправляет главный недостаток "классического" inpaint'а - игнорирование контекста. Впрочем, достаточно теории переходим к практике.

Итак, возьмём изображение, которое мы хотим отредактировать.

И сразу же уменьшаем/увеличиваем его до нужного разрешения:
В моём случае с 1500x1500 до 640x640. По опыту скажу, что лучший результат получается при размере меньшей стороны от 512 до 768 пикселей, а большая сторона при этом желательно меньше 1024 пикселей.

нейронные сети,гайд,туториал,StableDiffusion,песочница

Теперь открываем вкладку txt2img в web-gui, раскрываем ControlNet и переносим изображение на холст Unit 0, выбираем режим Inpaint и выставляем все нужные настройки (и включить не забудьте):

ControlNet Unit 0 ControlNet Unit 1 ControlNet Unit 2 ControlNet Unit3 Single Image Set the preprocessor to (invert] If your image has white background and black lines. D s * -* Q Enable Low VRAM Pixel Perfect CD Allow Preview Control Type All Canny Depth Normal OpenPose MLSD Lineart

Теперь замазываем места, которые хотим перерисовать:

нейронные сети,гайд,туториал,StableDiffusion,песочница

В промпт пишем то, что хотим в результате видеть. Ещё раз, пишем не то, что нужно нового добавить, а то, каким хотим видеть финальную картинку:

1girl, naked, completely nude, (best quality, masterpiece:1.2)

Негативный промпт как обычно:
EasyNegative, badhandv5, (worst quality, low quality, normal quality:1.4)

Модель подбираем поближе к стилю рисунка (реалистичный/стилизованный). В моё случае это MeinaMix_v11-inpaint.

Параметры генерации:

Sampling method DPM++2M SDE Karras Restore faces Tiling Width Sampling steps Hires, fix 640 Batch count n 640 Batch size,нейронные сети,гайд,туториал,StableDiffusion,песочница

Всё, можно нажимать Generate до тех пор пока не появится приемлемая картинка.

Столь хороший результат обеспечивается препроцессором inpaint_only+lama - он пытается дорисовать зону под маской с учётом "наружного контекста". Это же и обеспечивает генерацию правильного цвета.

Простой случай разобрали, переходим к чему-то посложнее:

Часть 2. Style transfer

Возьмём теперь другой рисунок попробуем повторить описанный выше процесс:

6 I I PATREON.COM/CUTESEXYROBUTTS PATREON.COM/CUTESEXYROBUTTS,нейронные сети,гайд,туториал,StableDiffusion,песочница

Мда, мало того, что поза поехала, так ещё и стиль оказался потерян. Одного ControlNet Inpaint тут недостаточно. Надо подключать дополнительные юниты.

Нам нужно решить 2 задачи:

Повторить существующий стиль рисункаСохранить силуэт

Для решения первой задачи будем использовать ControlNet reference и ControlNet T2IA - они оба позволяют копировать стиль с изображения-референса и как нельзя лучше работают в связке.

Возвращаемся к интерфейсу ControlNet'a. Копируем исходное изображение в Unit 1 и Unit 2. Настраиваем вот так:

0 Enable Low VRAM Pixel Perfect Allow Preview Control Type All Canny Depth Normal OpenPose MLSD Lineart SoftEdge Scribble Seg Shuffle Tile Inpaint IP2P О Reference T2IA Preprocessor reference_only И Control Weight i Starting Control о Ending Control 1 Style Fidelity (only for

0 Enable Low VRAM Pixel Perfect Allow Preview Control Type All Canny Depth Normal OpenPose MLSD Lineart SoftEdge Scribble Inpaint IP2P Reference Preprocessor t2ia_style_clipvision Control Weight i Starting Control Seg Shuffle Tile None controlnetT2IAdapter_t2iAdapterColor [c58d: /

(Все нужные модели скачать не забыли?)
А в качестве четвёртого ControlNet'a можно использовать любой, что позволяет сохранить форму: canny, depth, softedge, lineart - на ваше усмотрение и под конкретную задачу.

0 Image,нейронные сети,гайд,туториал,StableDiffusion,песочница

(Вот тут softedge)

Интересный факт: никто не запрещает отредактировать выход предпроцессора в фотошопе. Что-то убрать, что-то подрисовать. Вот где могут понадобиться навыки рисования.

Ладно, всё 4 юнита активны. Нажимаем Generate и:

PATREON.COM/CUTESEXYROBUTTS,нейронные сети,гайд,туториал,StableDiffusion,песочница

Это совсем не то, нужно!
Формы сохранены, но промпт будто проигнорирован. Что случилось? Я вам скажу что: сила ControlNet'а оказалась слишком велика. Stable Diffusion попытался во время генерации воссоздать рисунок-референс да ещё и плюс inpaint там подсунул белый цвет с фона!

Как с этим бороться? Нужно уменьшить эффект двух юнитов переноса стиля (reference и T2IA), но при этом нельзя сильно уменьшать их силу, иначе перенос стиля будет ослаблен. В общем, нужно воспользоваться настройкой Starting Control Step. Она отвечает за то, на какую долю шагов генерации придётся действие ControlNet'a.

Starting Control Step 0.5, например, означает, что первую половину шагов генерация будет опираться только на промпт, а со второй половины подключится уже наш ControlNet.

В общем, план такой: слегка понижаем Control Weight (сила) у стилевых юнитов (примерно до 0.9). После этого начинаем постепенно поднимать границу начала действия стилевых юнитов. Также имеет смысл подобным же образом немного ослабить действие Inpaint'a - позволяет в некоторых случаях исправить цвета.

После нескольких попыток (и усиление промпта) получаем вот такую задницу:

нейронные сети,гайд,туториал,StableDiffusion,песочница

Не идеально, но уже шаг в нужном направлении. На самом деле, сейчас можно (и нужно) уже именно это изображение сделать референсом. Другими словами, скопировать его во все 4 юнита и отталкиваться уже от него. И так сколько нужно раз. Пока не получится идеальный результат, либо ваша генерация окончательно не развалится.

Часть 3. img2img

Даже после получения хорошей генерации во вкладке txt2img имеет смысл несколько отшлифовать изображение уже через img2img inpaint. Главное не забудьте подключить 2 ControlNet'a для переноса стиля. Помните да, reference и T2IA.

Некоторые пункты в виде итога:

Ключ ко всему - это ControlNet (inpaint_only+lama) и ControlNet (reference_only, T2IA)
Генерацию лучше проводить поэтапно, чтобы было на что опереться в последующие шаги
Также имеет смысл разделять генерацию объектов нужной формы и затем покраску их в нужные цвета.
Подбирайте подходящие под задачу модели и/или лоры.
Не забудьте про параметры Control Weight, Starting Control Step, Ending Control Step. И про Control Mode в самом низу!

P.S. Хотел бы я чтобы кто-то обстоятельно протестировал этот метод и поделился бы потом результатами. Мне кажется, как-то можно добиться ещё большей близости к стилю оригинала, ведь задача состояла именно в этом.

Туториал закончен, теперь впечатления. Это охиренно мощная штука! Можно как угодно дорисовать любую картину, стиль вообще не важен, тем более что сейчас уже натренированы сотни моделей на все случаи жизни. Хоть скриншоты из мультфильмов/аниме, хоть картины маслом. Фильмы и фотографии вообще пройденный этап. Можно даже без использования inpaint'a просто сгенерировать сколько хочешь изображений с нуля, просто опираясь на единственный рисунок. А ведь ControlNet появился лишь в начале этого года. Короче, уже почти год прошёл, а всё это до сих пор кажется каким-то колдунством. Что грядущий день готовит...

Развернуть

Отличный комментарий!

а говорили что нейросети работу заберут
судя по этому туториалу теперь нужен Senior Stable Diffusion Manager чтобы только на жопу посмотреть )
imhosep imhosep01.08.202320:32ссылка
+32.6

нейронные сети гайд Stable diffusion раздетые нейросеткой 

Как отредактировать любой рисунок с помощью нейросети Stable Diffusion. Подробный гайд

Будем считать, что вы уже установили и настроили Automatic1111's Stable Diffusion web-gui, а также скачали расширение для ControlNet'a и модели для него. Нам нужно будет лишь controlNet Inpaint и controlNet Lineart.

В интернете уже есть гайд по установке. И не один. Да хоть на том же YouTube.

Будем учиться редактировать на примере вот этой картинки:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Автор - Chaesu

Первым делом открываем фотошоп. Да, прежде чем загружать изображение в SD, его нужно подготовить. Проблема тут такая: SD 1.5 модели не могут нормально работать с изображениями больше 800 пикселей. Поэтому, выделяем в фотошопе вот такую область размером 600x900:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Не снимайте выделение сразу, оно ещё пригодится

Выделение есть, теперь Ctrl+C и вставляем скопированный кусок во вкладку txt2img в окошко ControlNet'а (в первые три, то есть вставляем три раза):

ControlNet vl.1.440 3 units ▼ ControlNet Unit 0 ControlNet Unit 1 ControlNet Unit 2 ControlNet Unit 3 Single Image Batch Multi-Inputs Set the preprocessor to [invert] If your image has white background and black lines. Q и ^ ^ Q Enable Low VRAM Pixel Perfect,нейронные сети,гайд,Stable

Вы ведь не забыли увеличить количество юнитов контролнета в настройках?

Теперь настраиваем сами юниты контролнета:
Unit 0:

Preprocessor reference_only Control Weight 0,95 Starting Control Step o,22 Ending Control Step Style Fidelity (only for "Balanced" mode) Control Mode Balanced My prompt is more important Q ControlNet is more important,нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Первый юнит будет отвечать за перенос стиля

Unit 1:

Preprocessor Model inpaint_only+lama - u controlnetllModelsJnpaint [be8bc0e< ▼ Control Weight 1 Starting Control Step o Ending Control Step i Control Mode Balanced Q My prompt is more important ControlNet is more important □,нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Второй отвечает за редактирование с сохранением контекста

Unit 2:

Preprocessor Model lineart_realistic - u controlnetllModelsJineart [5c23bl7d Control Weight 0,8 Starting Control Step o Ending Control Step Preprocessor Resolution Control Mode O Balanced My prompt is more important ControlNet is more important - 0 0,8 600,нейронные сети,гайд,Stable

Ну и третий юнит для контроля генерации

После этого нажимайте на кнопку предпросмотра:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

И скачивайте получившийся "негатив"

Single Image Batch Multi-Inputs,нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Можно поиграться с другими препроцессорами, но lineart_realistic обычно выдаёт лучший результат

Смело открываем его в фотошопе (в новой вкладке, старую пока не трогаем) и начинаем редактировать. Надо лишь убрать всё лишнее и обозначить контур того, что хотим получить. Вот как-то так:

Контролирующий лайн готов. Теперь очищаем ControlNet Lineart и вставляем наш "линейный рисунок". Так как на вход теперь на вход контролнету сам лайн, то нам не нужен препроцессор - ставим его на none.

Single Image Batch Multi-Inputs 0 Image (' /' ff l [/ / '! " Y Y i y /\. / 1 Start drawing ’i VJ 1 , У / \ L i • i xx • ! 1 Set the preprocessor to [invert] If your image has white background and black lines. D а ^ Q Enable Allow Preview Control Type Low VRAM Pixel Perfect Mask

Это всё ещё Unit 2

Осталось только нарисовать маску inpaint'а. Переходим в ControlNet Inpaint (Unit 1) и прямо тут в веб-интерфейсе закрашиваем те части, которые хотим перерисовать:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Про тень от одежды не забудьте

Осталось лишь написать промпт (и негативный промпт), выбрать параметры генерации (размер 600x900 не забывайте) и нажимать Generate до тех пор, пока не увидите приемлемый результат.
Например:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Главное что стиль далеко не уехал

Это изображение неплохо бы отправить в img2img inpaint, чтобы поправить мелкие недоработки, но сейчас просто копируем его в буфер, возвращаемся в фотошоп и вставляем в нужное место (выделение пригодилось).

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Сидит как влитая

Исправляется тем же образом:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Приемлемо

По тому же принципу делаем остальных

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Видите недоработки? Исправить их - это ваше домашнее задание

А вот параметры генерации:

(best quality, masterpiece:1.2), 1girl, short hair, (white bikini:1.1), standing, cowboy shot, white background, contrapposto,
Negative prompt: (worst quality, low quality, normal quality:1.3)
Steps: 28, Sampler: DPM++ 2M SDE Karras, CFG scale: 6, Seed: 2598121264, Size: 600x900, Model hash: 3867bda67e, Model: kizukiAlternative_v10, VAE hash: 2125bad8d3, VAE: kl-f8-anime2.ckpt, Clip skip: 2,

ControlNet 0: "Module: reference_only, Model: None, Weight: 0.95, Resize Mode: Crop and Resize, Low Vram: False, Threshold A: 0.5, Guidance Start: 0.22, Guidance End: 1, Pixel Perfect: False, Control Mode: ControlNet is more important, Hr Option: Both, Save Detected Map: True",

ControlNet 1: "Module: inpaint_only+lama, Model: controlnet11Models_inpaint [be8bc0ed], Weight: 1, Resize Mode: Crop and Resize, Low Vram: False, Guidance Start: 0, Guidance End: 1, Pixel Perfect: False, Control Mode: My prompt is more important, Hr Option: Both, Save Detected Map: True",

ControlNet 2: "Module: none, Model: controlnet11Models_lineart [5c23b17d], Weight: 0.8, Resize Mode: Crop and Resize, Low Vram: False, Guidance Start: 0, Guidance End: 0.8, Pixel Perfect: False, Control Mode: Balanced, Hr Option: Both, Save Detected Map: True", Version: v1.7.0

Модель для генерации логично выбирать близкую по стилю. Для не слишком реалистичных рисунков Kizuki Alternative почти идеальна.

Несколько советов:

- Уменьшайте исходное изображение заранее, облегчайте нейросети работу.

- Можно обойтись из без Lineart'а, и тогда сетка додумает форму самостоятельно.

- Если какие-то части получились хорошо, а какие-то нет, то просто перенесите результат во вкладки Reference и Inpaint и работайте уже с ним.

- Если исходное изображение слишком тёмное либо светлое, то модель сама по себе может не справиться и имеет смысл подключать затемняющую или осветляющую мини-модель (лору).

Развернуть

нейросети Stable diffusion длиннопост NovelAI 

Модель NovelAI под Stable-Diffusion

Там недавно слили исходники NovelAI, на сколько знаю сервис генерит истории по описанию, что то вроде AI Dungeon. Но с 3 октября у них появилась фича генерить и изображения по описанию. Собственно слили и её.

Автор репозитория одной из сборок, AUTOMATIC1111 добавил в свою сборку поддержку работы новых слитых моделей ,его кстати забанили в офф. дискорде Stable Diffusion после произошедшего.

Если хотим поиграться с новой моделью, а выдаёт она довольно неплохие результаты, то нам нужно:

1. Установить сборку Stable Diffusion от AUTOMATIC1111 - https://github.com/AUTOMATIC1111/stable-diffusion-webui

2. Качаем модель (у них есть NSFW и SFW версии) и некоторые ещё необходимые вещи из слитых материалов - magnet:?xt=urn:btih:5bde442da86265b670a3e5ea3163afad2c6f8ecc&dn=novelaileak

Name > □ > > > > > > > > > > □ □ □ □ □ novelaileak github stableckpt Q animefull-final-pruned □ animefull-latest □ animefull-prevgood □ animesfw-final-pruned □ animesfw-latest □ animesfw-prevgood □ extra-sd-prune Q modules O vector_adjust Q animevae.pt □ clean.py workspace

3. Переименуйте model.ckpt, что лежит внутри animefull-final-pruned в любоеназвание.ckpt. например в novelai.ckpt, теперь переименуем animevae.pt в название которое мы дали предыдущему файлу и добавляем к нему .vae.pt к примеру в novelai.vae.pt... Теперь заходим директорию \stable-diffusion-webui\, заходим в папку models и создаём там папку с именем hypernetworks и кидаем в неё файлы aini.pt, anime.pt, anime_2.pt и т.д из папки modules, что мы скачивали. Теперь в папку \models\Stable-diffusion\ с основными моделями что мы используем, переносим ранее переименованый файл novelai.ckpt и файл novelai.vae.pt

4. Запускаем Stable Diffusion и переходим в настройки, ищем раздел "Stable Diffusion" и включаем нужную модель и finetune hypernetwork

outputs/extras-i mages Output directory for grids; if empty, defaults to two directories below Output directory for txt2img grids outputs/txt2img-grids Output directory for img2img grids outputs/img2img-grids Directory for saving images using the Save button log/images System VRAM usage

5. Готово, можем работать с новой моделью.

NovelAI использует CFG:11 и негативные промты: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, поэтому если хотите результаты похожие на те, что генерит оригинальная, то используйте эти параметры.

В некоторых промптах взятых напрямую из NovelAI может встречаться синтаксис {}. Он предназначен только для официального сервиса NovelAI. Так же усиливает акцент, как и (), но акцентирование увеличивается только в 1,05 раза вместо 1.1 с (). Поэтому если прям точь в точь повторить результат с понравившегося промпта, что увидели в интернетиках, то используем (слово:1.05) или видим {{}}, то используем (слово:1.1025)... А лучше почитайте https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features для понимания всяких тонких фишек.

Ну надеюсь всё правильно описал расписал. Если есть вопросы спрашивайте, если они в рамках понимания моего разума, то отвечу. Ниже приложу пару примеров изображений и промптов к ним, которые способна выдать модель. К слову через эту модель лучше генерить всякие анимешные арты ибо они там получаются лучше всего.

Мои:

((masterpiece)), painting of a ((Mandalorian)) bounty hunter, Star wars, Tatooine, space, stars, art by John J. Park
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
Steps: 150, Sampler: Euler, CFG scale: 11, Seed: 3998559443, Size: 512x704, Model hash: 925997e9

нейросети,Stable diffusion,длиннопост,NovelAI

((masterpiece)), girl,red dress,short hair,summer, twintails, black hair,
Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
Steps: 150, Sampler: Euler, CFG scale: 11, Seed: 3013799092, Size: 512x704, Model hash: 925997e9

нейросети,Stable diffusion,длиннопост,NovelAI

Из Discord'a NovelAI:

copic, thick outlines, {{mohawk, shaved sides}}, 1girl, {vibrant}, deep shadows, deep space, {{80s, scifi, movie poster}}, skin tight spacesuit, jumpsuit, {power armor}, {{small breasts}}, closeup, detailed eyes, torso, headshot

нейросети,Stable diffusion,длиннопост,NovelAI

{{BEST QUALITY}}, {{MASTERPIECE}}, {{HIGH RES}}, {{CINEMATIC LIGHTING}}, {{DETAILED}}, {{TELEPHOTO LENS}}, beautiful hd background, high detailed background, {realistic shadows}, HD shadows, {{{midjourney}}}, tarte (hodarake), Anor Lando, avataart, Andy Livy, by dark album, god teir background art, realistic, realistic portrait, masterpiece portrait, {{{{{{MASTERPIECE}}}}}}, sharp, photo realistic, background focus, {{{{{background only}}}}}, futuristic city, future, advanced technology, neon lights, holograms, flying ships, buildings metalic silver , advanced civilization, year 5096 , science fiction, sci-fi, futuristic dome, matrix

нейросети,Stable diffusion,длиннопост,NovelAI

{white hair}, {very long hair}, gloves, black yellow coat, bandaged wrist, torn clothes, {{black}} eyeshadow, black and white eyes, earrings, {{floating crown}}, {star halo}, detached wings, {{masterpiece}}, {1girl}, black smear on right side of face, space background, {goddess}, {standing on a white platform}, {star symbol on clothes}, star earrings, {{medium}} breasts, bandaged torso, patterns on eye pupils, long majestic black yellow coat, chain earrings, makeup, large black and yellow coat, inside a cathedral at night, {detailed large crown}, character focus, floating stars, presenting a menger cube, magic cubes on background, dark magic, serious, {divine}, {{teenage}}, mini universe above hand, black cubes on the background, supernova on the background, decorated hair, covered body, {{{black background}}}, light above head, spirals on background, fractal patterns, {{dirty face}}, bandaged arms, fractal background

нейросети,Stable diffusion,длиннопост,NovelAI

Развернуть

Stable diffusion нейронные сети сделал сам песочница 

Моя попытка в тренировку LoRA

В общем, балуюсь я нейросетями уже второй годик. Начиналось все для генережки портретиков для ДнД и картинок с природой. Но недавно стал выкладывать еще и посты с цветными конями на CivitAI, дабы нафармить местной валюты на обучение и как-то увлекся. Но потом вспомнил для чего это я все затеял и решил посмотреть что я смогу. В итоге смог не очень, но тем не менее, почему бы не поделиться с уважаемыми содомитами результатами, тем паче, что обучал не на ссанине по желтому снегу, а по самому Оглафу. Получилось не то что бы плохо, но и не хорошо. Хотя, если уменьшать получаемый результат до размеров кадров оригинального комикса, то вроде даже похоже. В общем судите сами, что за срака вышла...

https://civitai.com/models/473780/oglafstyle?modelVersionId=526996

P.S: Если у кого есть положительный опыт тренировки LoRA на CivitAI - поделитесь опытом. Хочеться делать так, что бы не стыдно было.

P.P.S: Пощу на реакторе я, мягко говоря, не часто, так что если где-то что-то налажал в оформлении и/или тегах, прошу сообщить, что бы я поправил, а уже потом кидайте фекальными массами.

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

 V fei,Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Развернуть

Stable diffusion нейронные сети видео 

Большой гайд по Stable Diffusion UI

<iframe width="560" height="315" src="https://www.youtube.com/embed/PveSwofCBic?controls=0" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>

Развернуть

Stable diffusion нейросети нейроарт art 

Легкая установка Stable diffusion локально

Существует довольно простой вариант установить Stable diffusion (SD) на ваш компьютер. Даже не надо с консолью ковыряться, все гораздо проще и работает с обширным функционалом.

txt2img img2img Extras PNG Info Settings 0 Output Send to inpaint Interrupt warhammer 40000 Steps: 20, Sampler: Euler a, CFG scale: 13.5, Seed: 3707967471,Stable diffusion,нейросети,нейроарт,art,арт

Итак, инструкция по установке: 

1) Переходим по ссылке: Скачать SD с гитхаба без регистрации и СМС

2) Качаем ZIP архив с интерфейсом. 

Go to file Add file Code \j\j 0 clone © HTTPS SSH GitHub CLI ar https://github.com/AUTOHATICllll/stable-d: [□ ^ Use Git or checkout with SVN using the web URL. CJp Open with GitHub Desktop in i if) Download ZIP pnt ?0 hours ann,Stable diffusion,нейросети,нейроарт,art,арт

3) Распаковываем архив на свой компьютер туда где есть место. Потребуется где то 10 гб.

4) Скачиваем сам файл с SD (а если быть точным - веса) по ссылке или же через торрент:

magnet:?xt=urn:btih:3a4a612d75ed088ea542acac52f9f45987488d1c&dn=sd-v1-4.ckpt&tr=udp%3a%2f%2ftracker.openbittorrent.com%3a6969%2fannounce&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337

5) Есть такие штуки как GPFGAN - приблуда для исправления лиц и ESRGAN - приблуда для апскейла картинок. Я с ними еще не разбирался, а если и запускал то они плоховато работали, так что пояснения с их работой и установкой будут в следующих постах. (Но кто хочет - может поставить сам поиграться).

6) Теперь ставим проги для того чтобы все работало: GIT и Python версии 3.10.6. Python нужно устанавливать с галочкой "Add Python to PATH".

А также в ридми было указано поставить CUDA. Зачем я конечно не знаю, но я поставил на всякий случай. 

7) Перекидываем наш файлик из пункта 4 в папку из пункта 1, т.е. переименовываем файл в model.ckpt и размещаем в stable-diffusion-webui-master. 

К model, ckpt 05.09.2022 21:28 Файл "CKPT' 4165411 КБ К README.txt 07.09.2022 15:30 Текстовый докум... 11 КБ К requirements.txt 07.09.2022 15:30 Текстовый докум... 1 КБ К requirements_versions.txt 07.09.2022 15:30 Текстовый докум... 1 КБ В screenshot.png 07.09.2022 15:30 Файл "PNG" 513 КБ Щ

8) Запускаем webui.bat. Должна начаться загрузка требуемых данных для работы. У меня потребовалось перезагрузить комп, чтобы все программы встроились в систему. 

9) Переходим в браузер по адресу http://127.0.0.1:7860/ и играемся. 

txt2img img2img Extras PNG Info Settings None,Stable diffusion,нейросети,нейроарт,art,арт

Вроде ничего не забыл, если что - пищите. 

В следующих постах постараюсь подробно расписать то как в ней работать. 

Развернуть

Stable diffusion нейронные сети Photoshop 

Плагин для работы с Automatic1111 (img2img, inpaint, outpaint) через фотошоп

Как установить:

Первый запуск плагина (локальный Automatic1111):

скачать плагин:git clone https://github.com/AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin.git— запускаем "start_server.bat"  в "Auto-Photoshop-StableDiffusion-Plugin" папке
— идем туда, где у тебя установлено automatic1111. Измени "webui-user.bat" в automatic1111 эту строчку

set COMMANDLINE_ARGS=

на

set COMMANDLINE_ARGS= --api

что позволит плагину взаимодействовать с automatic1111. После сохранения закройте"webui-user.bat" файл и запустите его в обычном режиме.

— запускаем photoshop. идем в edit -> prefrences -> pluginsубедись, что включено "Enable Developer Mode"

— установи "Adobe UXP Developer Tool" отсюда Installation (adobe.com) этот инструмент добавит плагин в photoshop

— запусти Adobe UXP Developer Tool и нажми "Add Plugin" кнопку сверху справа. 

— Перейдите туда, где у вас есть "Auto-Photoshop-StableDiffusion-Plugin" папка и открой "manifest.json"

— выбери плагин, нажми Actions -> Load Selected.

Шаги для запуска плагина во второй раз и далее:

1) запускаем "webui-user.bat"

2) запускаем"start_server.bat"

3) запускаем "Photoshop"

4) запускаем" Adobe UXP Developer Tool" и загружаем плагин.

Как использовать плагин:

По ссылке гитхаб, описываются всё о плагине, не поленитесь прочитать, если у вас возникнут проблемы при установке, работе с ним.

Также есть группа дискорд с автором этого плагина.

p.s.

—   automatic1111 нужна последней версии

—   photoshop нужен 24.0 (можно и на 23 версии, но там могут быть ошибки)

—   работает и со взломанным photoshop

Развернуть
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме Stable Diffusion установка (+1000 картинок)