микробы
Подписчиков: 1 Сообщений: 41 Рейтинг постов: 712.7холера История медицина болезнь История медицины наука пандемия Эпидемия микробы песочница
ХОЛЕРА - [ИСТОРИЯ МЕДИЦИНЫ]
В Париж она вторглась в конце марта 1832 года. Не встретив достойного медицинского отпора, она уничтожила половину заразившихся. Проявлялась она, набором ни на что не похожих жутких симптомов. Ни трагического туберкулезного кашля, ни романтичного малярийного жара. Лица больных в считаные часы сморщивались от обезвоживания, слезные каналы пересыхали. Кровь становилась вязкой и застывала в сосудах. Лишенные кислорода мышцы сводило судорогой вплоть до разрывов. По мере того как один за другим отказывали органы, жертвы впадали в шоковое состояние, при этом находясь в полном сознании, литрами исторгая жидкий стул. По городу ходили страшные истории о том, как человек, сев пообедать, к десерту был уже мертв; о том, как пассажиры поезда вдруг падали замертво на глазах всего купе. Причем не просто хватались за сердце падая на пол, а бесконтрольно опорожняли кишечник. Она была унизительной, дикарской болезнью, она оскорбляла благородные чувства европейцев XIX века.
Болезнь приводила городских медиков в смятение. Один из них докладывал об осмотре семейной пары, заразившейся холерой. Кровать и белье «были пропитаны прозрачной, ничем не пахнущей жидкостью», и если женщина беспрестанно просила воды, то мужчина рядом с ней лежал без сознания. Врач попробовал нащупать пульс. «До такой кожи мне еще не доводилось дотрагиваться, хотя я много раз бывал у смертного одра. От этого прикосновения у меня похолодело сердце. – Не верилось, что в теле, которого я коснулся, еще есть жизнь». Кожа на руках обреченной пары сморщилась, как «после долгой возни в воде» «или, скорее, как у трупа, пролежавшего не один день»
Так выглядит холера - одна из самых, если не самая опасная болезнь 19 века, она поражала всех без разбору, короли, герцоги, крестьяне, моряки эмигранты - никто не устоял перед этой страшной заразой, которую представлял холерный вибрион. Именно эта бактерия в ответе за семь полномасштабных пандемий, унесших миллионы жизней в 19 и 20 веках.
"В пятидесятых годах 19 века, смертность от эпидемии холеры только в России составила больше миллиона человек, это была самая смертоносная эпидемия за всё столетие".
Откуда же взялся этот холерный вибрион и как ему удалось освоиться в человеческом организме? на это нам даст ответ детальный взгляд на крошечных ракообразных под названием веслоногие. Размером они около миллиметра длиной, каплеобразной формы, с единственным ярко-красным глазом. Их относят к зоопланктону - они не могут самостоятельно передвигаться в воде на дальние расстояния и путешествуют по течению вместе с водными массами. Ориентироваться в потоках воды им помогают длинные, как крылья усы, и хоть об их существовании знают немногие, это самое многочисленное многоклеточное животное в мире. На одном морском огурце может обитать более двух тысяч веслоногих рачков. За сезон каждая отдельная особь может произвести до 4,5 млрд потомков.
Да, если смотреть в нашем масштабе, то это всего лишь четыре с половиной миллиарда миллиметров, не так уж и много, но это ведь потомство только одной особи, а если их будет четыре с половиной миллиарда? согласитесь, совсем другие цифры :)
Холерный вибрион – это бактериальный партнер веслоногих. Как и другие представители рода вибрионов, он представляет собой похожую на микроскопическую запятую бактерию. Несмотря на то, что вибрион может самостоятельно существовать в воде, он предпочитает облеплять веслоногих внутри и снаружи, прикрепляясь к их яйцевым камерам и выстилая внутренность кишечника. Там вибрион выполняет очень важную экологическую функцию. Как и все ракообразные, веслоногие покрыты хитином, этаким защитным панцирем и в силу того, что растут они всю жизнь, по мере роста они сбрасывают тесный панцирь в воду. Ежегодно веслоногие оставляют на морском дне в общей сложности 100 млрд тонн хитина, который потом поглощают вибрионы, перерабатывая совместными усилиям 90 % хитинового мусора. Если бы не они, на горы экзоскелетов, выращенных и затем сброшенных веслоногими, скоро израсходовались бы весь углерод и азот в океане. Вот такую важную экологическую функцию выполняет этот опасный вибрион, сгубивший миллионы жизней и продолжающий свой кровавый промысел и по сей день.
Такой опасный и такой необходимый, но опасный ли именно он? Не совсем, сам этот вибрион не опасен, опасен его брат мутант, сумевший приспособиться к человеческому организму и твёрдо в нем обосноваться.
Вибрионы и веслоногие плодились и размножались в теплых солоноватых дельтах рек, где смешивается пресная и морская вода. Таких например, как Сундарбан – обширные болотистые леса в бассейне крупнейшего в мире морского Бенгальского залива. Жили они себе не тужили, пока на их родину не пришел человек, и не простой человек, а предприимчивые английские колониалисты. Руками тысяч наемных работников из местного населения они вырубали мангры, строили запруды и сажали рис. Хронисты XIX века описывали эти места как
«затопленные земли, которые покрыты джунглями, задыхаются от малярии, кишат дикими зверьми», но «невероятно плодородны»
К концу XIX века человеческие поселения занимали около 90 % когда-то девственного, непроходимого – и кишащего веслоногими – Сундарбана. Местные рыбаки и крестьяне постоянно жили по колено в солоноватой воде, как раз в местах идеальных для размножения веслоногих рачков. Рыбак ополаскивает лицо, крестьянин берет воду из подтапливаемого колодца, в котором полным полно веслоногих и т.д. Из-за такого тесного контакта с веслоногими, а заодно и с холерным вибрионом, т.к на одном таком веслоногом может находиться до 7000 вибрионов, у этих вибрионов и появилась отличная возможность переключиться на человеческий организм.
Как зооноз, холерный вибрион инфицировал только тех людей, которые сталкивались с его «естественным резервуаром», т. е. с веслоногими. Для того, чтобы передаваться от человека к человеку, ему понадобились благоприятные условия: это теплая комфортная среда, постоянный контакт с человеком и немножко эволюционного времени.
Способов перестроиться исключительно на людей у вибриона было предостаточно, но он обеспечил себе будущее научившись создавать микроколонии в кишечнике и вырабатывать токсин. Последнее умение стало его главным преимуществом. Вырабатывая токсин, вибрион заставлял бурным потоком жидкости вымывать остальные кишечные бактерии, избавляясь таким образом от конкурентов, позволяя вибриону, микроколонии которого намертво уцепились за стенки кишечника, без проблем там обосноваться.
Также благодаря бесконтрольному бурному испражнению холерный вибрион проникал куда угодно, на немытые руки через которые он попадал в следущую жертву или вместе с содержимым уборных попадал в сточные воды загрязняя их и т.д. К слову, неумелое обращение Европейцев того времени с отходами жизнедеятельности сыграло Холере на руку. В купе, конечно же, с медицинскими представлениями о происхождении всех болезней. Эти два столпа мировой культуры 19 века, а точнее антисанитария и неправильное представление о бактериях, точнее его отсутствие, сыграли решающую роль в распространении заразы на весь мир.
Во первых, в те времена принято было вываливать все отходы в реки, считалось, что если запаха не слышно, то и проблемы нет. Согласно Гиппократовой миазматической теории возникновении всех заболеваний, принято было считать, что вся зараза находится в воздухе. О бактериях говорить в те времена было не принято, и это учитывая тот факт, что микроскоп изобрели аж за два столетия до этого(но поговаривают, что не совсем они были пригодны для рассматривания в них конкретно бактерий, но сам не уточнял). Медицинское сообщество было непоколебимо и до конца не признавало природу возникновения холеры, а именно то, что вибрион передается с водой(даже тогда, когда об этом на каждом углу трещали), и что если тщательно очищать воду или брать её из реки выше(до того как в неё выльются тонны экскрементов зараженных горожан), то люд, всё же не будет так стремительно отходить в мир иной.
Отказывались также и от лечения холеры солевым раствором, который восполнял потерю жидкости в организме и давал просто колоссальные шансы выжить заболевшим. Логика лечения предполагала восполнить вызванную рвотой и диареей потерю жидкости, т.к организм от потери жидкости просто-напросто высыхал. От этого метода открещивались всё потому же, она противоречила Гиппократовой парадигме. Согласно гиппократову учению, эпидемические болезни вроде холеры распространяются через зловонные испарения, через так называемые миазмы, отравляя тех, кто их вдыхает. Поэтому холерных больных мучает неукротимая рвота и понос: организм силится исторгнуть попавший в него с миазмами яд. На то время это было более чем логично, хотя бы потому, что другого объяснения ни у кого не было, а если у кого-то и было, то оно сразу же подавлялось неукротимой силой авторитета учёных мужей.
Противодействовать этим процессам с помощью соленой воды и чего бы то ни было, в принципе выглядело с философской точки зрения таким же ошибочным, как сегодня отковыривать корочку на ране. Не помог даже наглядный пример действия этого метода от Уильяма Стивенса, простого врача трудивегося на Виргинских островах. Не помог потому, что он - Стивенс, был никто, а в те времена, если никто претендует на шатание парадигмы, он шлётся куда подальше. Стивенс провел просто потрясающий эксперимент, в 1832 году он поил соленой жидкостью более двухсот больных холерой в одной лондонской тюрьме – число скончавшихся от болезни составило всего 4 %. Это в десятки раз превосходило самые лучшие результаты, которые только могли продемонстрировать светилы того времени. Но ему не поверили и не восприняли всерьез. Эксперты, посетившие тюрьму, где Стивенс провел свои удачные опыты, его успехи не приняли и заявили, что
«Ни единого случая, симптомы которого соответствовали бы холерным, я там не наблюдал».
Холерным больным они были готовы признать тех, кто бился в агонии и находился при смерти, а раз таковых не было обнаружено, то собственно и холеры в тюрьме не было. Логика :)
В научных кругах Стивенса обозвали шарлатаном и посоветовали забыть о своей бесполезной “афёре”.Рецензенты и вовсе подняли его на смех -
«В отличие от свинины и сельди, – ерничал один из рецензентов в 1844 году, – засолка больных не слишком способствует продлению срока их жизни».
Таких прецедентов становилось всё больше и Гиппократова миазматическая теория сыпалась словно песочный замок. Авторитетному учёному того времени - Джону Сноу - удалось собрать неопровержимые доказательства в свою пользу и доказать, что холерой заражаются именно через употребление загрязненной воды. Прошло немало времени с тех пор, как к идеям Сноу начали прислушиваться. Но всё же, реконструкция канализации, которая предполагала не сбрасывание отходов в реку, а хранение их в отдельных местах, лечение солевыми растворами пациентов и другие методы позволили миру избавиться от такой напасти, как холера ну или свести её жертвы к минимуму.
Но всё же это не значит что холера полностью отошла от дел, в современном мире эта болезнь больше характерна для развивающихся стран, где все ещё очень плохо с чистой питьевой водой и нормальной системой канализации. К примеру, в 2010 году на Гаити была вспышка холеры, более двухсот тысяч человек оказались заражены и четыре с половиной тысячи погибло. Так что, рано пока петь дифирамбы и хоронить эту серьезную напасть. Хоть и против этой болезни есть вакцины, большинство из которых эффективны только в течении полу года, а потом эффективность действия постепенно снижается. Но радует тот факт, что такую криповую и быстро развивающуюся болезнь всё же лечат и лечат довольно успешно, хоть это и по прежнему неприятная штуковина.
Ссылки на источники:
https://www.ncbi.nlm.nih.gov/pubmed/18840081
https://books.google.by/books?id=j9DBa6ReHH0C&pg=PA678&lpg=PA678&dq=James+Johnson,+ed.,+The+Medico-Chirurgical+Review,+vol.+21,+1832.&source=bl&ots=67UYAgDipk&sig=ty2LxWwRTL4lnG03ozPwzWDp73c&hl=ru&sa=X&ved=0ahUKEwjpy__ayrLbAhXEIpoKHeHNB3AQ6AEIOTAE#v=onepage&q=James%20Johnson%2C%20ed.%2C%20The%20Medico-Chirurgical%20Review%2C%20vol.%2021%2C%201832.&f=false
https://academic.oup.com/cid/article/48/6/839/287617
https://pulitzercenter.org/reporting/contagion-new-york-city-1832
https://pulitzercenter.org/water-and-sanitation
https://pulitzercenter.org/haiti-after-quake
https://pulitzercenter.org/reporting/mapping-cholera-tale-two-cities
http://aem.asm.org/content/77/17/6125.full
http://emj.bmj.com/content/20/4/316
http://www.ph.ucla.edu/epi/snow/jepidcomhlth63(3)_497_499_2009.pdf
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1462-2920.2007.01559.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165371/
https://www.researchgate.net/publication/227129574_How_Many_Copepods
https://www.nature.com/articles/srep00997
наука песочница эволюция микробы старение смерть биология
Зачем мы стареем, почему размножаемся, и как это связано с микроорганизмами?
Глава девятая - Логика пандемии
Непосредственных исторических данных о досаждавших человечеству древних пандемиях у нас нет. Судить о них можно лишь по косвенным признакам, по оставленным ими отпечаткам и отголоскам. Но, согласно эволюционной теории и растущему массиву доказательств из области генетики и других наук, пандемии и вызывающие их патогены сыграли немалую роль в формировании основополагающих аспектов человеческой природы – от воспроизводства до смерти. Они обусловили разнообразие наших этносов, исходы наших войн, передающиеся из поколения в поколение представления о красоте, не говоря уже о наших организмах как таковых и их уязвимости для сегодняшних патогенов. На современных факторах, провоцирующих пандемии, их древнее могучее воздействие сказывается точно так же, как на течениях – воздействие приливов и отливов.
Болезнь – неотъемлемая составляющая взаимоотношений между микробами и носителями. Чтобы убедиться, достаточно совершить краткий экскурс в историю существования микробов и заглянуть внутрь нашего собственного тела. Сейчас царь природы – человек, однако в прошлом на планете царили микробы. К тому времени – около 700 млн лет назад, – как наши древнейшие предки, первые многоклеточные организмы, выбрались из моря, микробы колонизировали земной шар уже почти 3 млрд лет. Они заполонили все доступные среды обитания – море, почву, глубокие слои земной коры. Они выдерживали самые невероятные условия – от 10-градусного мороза до 110-градусного пекла, питаясь чем угодно – от солнечного света до метана. Благодаря такой стойкости и выносливости они смогли существовать в самых недоступных и экстремальных нишах, осваивая поры скальных пород, ледяную корку, вулканы и океанские глубины. Им неплохо жилось даже в самых холодных и соленых морях{566}.
Для микробов наш организм был всего-навсего очередной нишей для освоения, и, как только он сформировался, они устремились завоевывать новую среду. Микробы колонизировали нашу кожу и эпителий кишечника. Они внедрили свои гены в наши. Вскоре в человеческом организме обитало 100 трлн микробных клеток – в десять с лишним раз больше, чем человеческих. Треть нашего генома образована генами бактериального происхождения{567}.
По доброй ли воле наши предки давали прибежище микроорганизмам-колонизаторам? Возможно. Но маловероятно. Потому что, подобно обороняющемуся государству, объявившему всеобщую мобилизацию, мы выработали огромный арсенал средств для распознавания, захвата и уничтожения микробов. Мы отшелушиваем частицы кожи вместе с микробами, угнездившимися на ее поверхности. Регулярно моргая, мы смываем микробов с глазных яблок. Мы создали антибактериальную смесь из слизи и соляной кислоты в желудке, чтобы микробам неповадно было там селиться. Каждая клетка нашего организма изобретала хитрые способы защититься от микробного вторжения и самоуничтожиться в случае неудачи.
Специализированные клетки – белые кровяные тельца – курсируют по организму с единственной задачей: выявлять, атаковать и истреблять микробов-захватчиков. За то время, что вы читаете эти строки, они уже пронеслись потоком по всему вашему телу, выискивая признаки микробного вторжения.
Выработка этой иммунной защиты свидетельствует о непреходящей угрозе, которую всегда представляли собой микробы. Чтобы выжить, наш организм должен был чутко реагировать на заражение и давать отпор. Иммунная защита существует не для проформы – как какой-нибудь пенсионер-охранник, похрапывающий перед телевизором в дальней комнате захудалого магазина. Она всегда начеку и заводится с пол-оборота. Сегодня нам достаточно увидеть изображение человека, подвергнувшегося микробной атаке – чихающего или с гнойниками на коже, – и наши белые кровяные тельца лейкоциты моментально выбросят усиленный десант иммунных борцов, например цитокина интерлейкина-6, будто нам и в самом деле грозит микробный удар{568}.
Поддерживать эту боеготовность против микробов – дело нелегкое. При каждой активизации иммунной системы нам требуется увеличивать потребление кислорода. И когда энергию приходится тратить куда-то еще (например, когда мы вынашиваем и нянчим потомство), защита закономерно ослабевает. И в первобытные времена, и сейчас нам не хватает ресурсов, чтобы обслуживать энергоемкую иммунную систему. Защита организма от микробных посягательств «затратна», как говорят биологи. И все же мы эту цену платим, поскольку иначе в микробном окружении не выжить{569}.
Однако, хотя иммунная система и борется с покушениями патогенов на организм, обезопасить его полностью она не может. Об этом нет и речи: по сей день любое снижение боеготовности – или изменение способности микробов прорывать защиту – приводит к жестоким стычкам. Когда наша иммунная защита ослабевает с возрастом, из-за болезни или упадка сил, в клетки вторгаются микробы. И начинают бесчинствовать – каждый по-своему. Одни размножаются без меры, поглощая наши питательные вещества или разрушая в процессе наши ткани. Другие, в частности холера, выделяют токсины, способствующие ее размножению или распространению. Третьи просто вызывают реакцию других чувствительных систем организма. Способы могут быть разными, но итог один: они жиреют, а мы таем.
Мы называем этих захватчиков патогенами, но на самом деле это просто микроорганизмы, которые делают то же, что и везде: непрерывно питаются, растут и распространяются. Такова их природа. При оптимальных условиях микробы удваиваются в количестве каждые полчаса. И они не стареют. Пока вокруг достаточно пищи, они не умрут, если только не уничтожить их специально. Иными словами, они будут эксплуатировать любые доступные ресурсы по максимуму, и если это приведет к эпидемии или пандемии – ну что ж поделать.
Мы можем себе представить картину прошлого, полного пандемий, исследуя логику жизненного цикла микроорганизмов и характер нашей иммунной защиты. Но есть и другие источники информации. Эволюционные биологи и генетики считают подтверждением нарисованной картины определенные аномалии – необычные профили генной экспрессии в нашей ДНК и странные, ничем иным не объясняющиеся поведенческие проявления. Для специалиста (а специалистов в этих областях все больше) они не менее показательны, чем для следователя – дрожь в руках у человека, вроде бы благополучно оправившегося от психического потрясения. Объяснить их наличие можно только бурным, изобиловавшим пандемиями прошлым.
* * *
Чтобы разобраться в этом несколько парадоксальном положении дел, потребуется небольшой экскурс в так называемую теорию эгоистичного гена. Основная ее идея заключается в том, что главной движущей силой эволюции выступают гены или, точнее, геном – весь набор генов конкретной особи. Геном состоит из длинных спиральных молекул ДНК (или РНК), которые содержатся в каждой из наших клеток. В их элементах (генах) закодированы инструкции для формирования всех биологических особенностей, от цвета глаз и формы носа до тембра голоса. Согласно теории эгоистичного гена, к «действиям» генов по поддержанию собственного существования сводится вся эволюция. Одни гены, диктуя, т. е. кодируя, свойства организма, которые будут способствовать их вместе с самим организмом дальнейшему распространению, устойчиво закрепляются. Другие кодирующие особенности, бесполезные или мешающие успеху распространения, вымирают.
С точки зрения теории эгоистичного гена половое размножение и смерть как раз и удивительны – ведь ни половую связь, ни смерть, учитывая возможные альтернативы, эффективным средством распространения генов не назовешь.
Возьмем половое размножение. Когда-то все живое на планете размножалось неполовым путем (клонированием или иными способами). Полового размножения не было. Но на каком-то витке эволюции оно появилось, хотя с точки зрения генов стратегия эта сильно уступала другим способам воспроизводства. Клонирующийся организм передает потомству все 100 % своих генов, тогда как при половом способе приходится не только искать партнера для воспроизводства, но и упускать половину генов, поскольку отпрыск наследует лишь 50 % от каждого родителя.
Чтобы выжить, первым организмам, размножающимся половым путем, необходимо было победить в конкуренции с клонирующимися, господствовавшими над ресурсами и экологическими нишами планеты. Но каким образом? В 1970-х годах эволюционный биолог Уильям Хэмилтон смоделировал на компьютере условия тех первобытных времен. Для модели задано было население, в котором половина особей размножается клонированием, а половина – спаривается. (Вообразите себе клан амазонок, которые размножаются без мужчин, и племя женщин, которое производит потомство только при участии партнера противоположного пола.) Никто из них не избавлен от вероятности случайной смерти, грозящей любому живущему в дикой природе, – погибнуть в когтях хищника или замерзнуть в буране. Затем компьютерная модель просчитывала репродуктивный успех обоих племен, вычисляя, сколько потомства произведет каждое.
Результаты двух разных стратегий размножения не заставили долго себя ждать. При каждом запуске модели воспроизводящиеся половым путем быстро вымирали. Случайная гибель в спаривающемся племени приводила к непропорциональному истощению фонда потенциальных партнеров (что испытал на себе любой представитель возраста «кому за сорок», пытающийся завести романтическое знакомство). Клонирующимся, которые сохраняли стабильный уровень воспроизводства независимо от случайных потерь, это не грозило. И не важно, что потомство в спаривающемся племени получалось более генетически разнообразным, а значит, более устойчивым к изменениям окружающей среды в долгосрочной перспективе. Перед непосредственной опасностью в виде бремени случайных потерь долгосрочные преимущества меркли.
Получается, что половое размножение – провальный эксперимент? А вот и нет. В конечном итоге репродуктивная стратегия наших самых далеких предков распространилась на все животное царство, включая и человека, для которого до сих пор поиск партнера – одна из основных жизненных задач.
Разрешил этот парадокс сам Хэмилтон, предложив сенсационную разгадку: половая связь появилась благодаря патогенам.
Половое размножение требует значительной генетической жертвы, отмечает Хэмилтон, но она окупается тем, что потомство при таком размножении генетически отличается от родителей. В борьбе с суровой погодой или хищниками это невеликое преимущество, а вот в борьбе с патогенами – огромное. Поскольку патогены, в отличие от погоды или хищников, оттачивают технику наступления.
Предположим, некий патоген прицепился к вам еще в младенчестве. По мере того как вы растете, у него сменяются сотни тысяч поколений. К тому моменту, как вы достигнете зрелости (если он вас за это время не убьет) и будете готовы дать потомство, его техника нападения будет совершеннее вашей техники защиты. Ваши генетические характеристики остались на прежнем уровне, а патоген успел эволюционировать.
Особи, размножающиеся клонированием, создают точную копию организма, который перед патогеном уже спасовал, а значит, оставляют потомству самые ничтожные шансы умерить аппетиты патогена. Гораздо выгоднее в таком случае, рассуждал Хэмилтон, производить генетически отличное от вас потомство, даже если половиной собственных генов для этого придется пожертвовать.
Насколько отточенными становятся со временем атаки патогенов, ученые продемонстрировали, в порядке эксперимента подсаживая патогены пожилой особи к более юной. Одно из таких исследований, на которое ссылается эволюционный зоолог Мэтт Ридли, проводилось над деревьями-долгожителями – Дугласовыми пихтами, которые регулярно страдают от щитовки. (Хоть щитовка не микробы, но, как и микробные патогены, приводит к болезни дерева.) В дикой природе старые деревья болеют больше молодых. И вовсе не потому, что они слабее, хотя именно эта догадка первой приходит на ум. Старые деревья легче поддаются заражению, потому что у развившихся на них патогенов было больше времени приспособиться. Молодое дерево, на которое ученые пересадили щитовку со старого, болело с той же интенсивностью. Учитывая все это, неудивительно, что половое размножение увеличивает шансы на выживание по сравнению с клонированием{570}.
За время своего существования гипотеза Хэмилтона о патогенах и эволюции половых связей успела получить внушительное эмпирическое подкрепление. Биологи установили, что виды, которым свойственно как половое, так и бесполое размножение, переключаются с одного на другое в зависимости от присутствия патогенов. При выращивании в лабораторных условиях, где привычных патогенов нет, или в окружении патогенов, искусственно лишенных возможности эволюционировать, круглый червь Caenorhabditis elegans в основном размножается бесполым путем. Но, когда его осаждают патогены, он переходит на половое размножение. В других экспериментах ученые целенаправленным воздействием «отключали» червю половое размножение, и выращенные затем с патогенами черви вымирали в пределах двадцати поколений. И наоборот, когда круглым червям оставляли возможность размножаться половым путем, они выживали в окружении патогенов бесконечно долго. Судя по всему, без определенных преимуществ, которые дает половое размножение, противостоять патогенам не удастся{571}.
В дополнение к эволюции половых связей патогены могли спровоцировать и другую адаптацию – смерть. Видеть в ней необязательное свойство, которое можно выработать эволюционным путем, нам непривычно. Неотвратимость увядания и смерти – один из ключевых элементов нашего мировоззрения. Мы рассматриваем тело как механизм, который со временем неизбежно изнашивается, его части выходят из строя, повреждения накапливаются, и наконец после преодоления некоего критического порога механизм перестает работать вовсе. Поэтому мы говорим, что «смерть не обмануть». У нас даже слово «возраст» – которое в буквальном смысле означает лишь течение времени – ассоциируется с увяданием и износом. (На самом деле мы имеем в виду биологическое старение – постепенное ухудшение функционирования организма, в конечном итоге приводящее к смерти.)
Однако неотъемлемым аспектом жизни одряхление и смерть назвать нельзя. Вокруг достаточно примеров бессмертия: микроорганизмы живут вечно, деревья не дряхлеют, а наоборот, с годами становятся только крепче и плодовитее. Для микробов и многих растений бессмертие – это правило, а не исключение. Среди животных тоже попадаются вечно юные: например, омары и двухстворчатые моллюски, которые гибнут лишь насильственной, а не естественной смертью.
У человеческого организма имеется одно бесспорное отличие от машины – возможность самовосстановления. После физической нагрузки мы восполняем урон, нанесенный мышцам. При переломе или порезе мы выращиваем новую костную ткань и рубцуем рану. (Есть даже сообщения о людях, которым нарастили оторванные пальцы.){572} У наших клеток имеется немало способов восстанавливаться после причиненного ущерба. Способности к самозаживлению имеются и у других животных: черви регенерируют из отрезанной части тела, морские звезды отращивают заново потерянные лучи, а ящерицы – хвост. И от этой регенерации организм не становится слабее, наоборот.
Ученые установили, что одряхление – вовсе не заведомая неизбежность, оно контролируется определенными генами – так называемыми генами смерти, или «самоубийственными». Их функция заключается в том, чтобы постепенно отключать процессы самовосстановления, поддерживающие организм в рабочем состоянии. Как дворецкий, который гасит свечи после бала. В урочный час, невзирая ни на что{573}.
Открытие этих генов относится к 1970-м, когда ученые обнаружили, что удаление определенных желез у самки осьминога может отсрочить неизбежную в противном случае смерть. В обычных условиях самка осьминога перестает питаться и умирает ровно через десять дней после высиживания яиц. Однако хирургическое удаление желез, отвечающих за созревание и размножение, кардинально изменило поведение самки. Отложив яйца, она снова начала есть и прожила еще полгода{574}. Аналогичные гены, не имеющие иной задачи, кроме как запускать процесс угасания и смерти, ученые выявили у червей и мух. Если эти гены «отключить» в ходе эксперимента, смерть откладывается – подопытные червяки и мухи продолжают жить{575}.
Пока маловероятно, что такие же – однозадачные – гены обнаружатся у людей. Скорее всего, гены самоуничтожения у человека выполняют целый ряд функций, как разрушительных, так и полезных. Гены, отвечающие за воспаление, защищают нас от ран и инфекций в юности, но затем идут вразнос и начинают поражать здоровые клетки. Условия, провоцирующие такую резкую смену курса, еще не установлены, однако, по очевидным причинам, по этой теме ведется масса вызывающих пристальный интерес исследований в области борьбы со старением{576}.
Открытие самоубийственных генов рождает те же вопросы, что и половое размножение. Как такие гены могли развиться? Вызываемая ими запрограммированная смерть – заведомый проигрыш по сравнению с альтернативами. При непосредственной эволюционной конкуренции обремененные подобными генами особи – сходящие с дистанции на полпути к финишу, тогда как соперники летят вперед во весь опор, – несомненно, терпят фиаско. А значит, такой серьезный недостаток должен как-то окупаться.
Окупается он, согласно так называемой адаптационной теории старения, защитой против пандемий, уничтожающих целые виды. У бессмертия, несомненно, есть свои выгоды, но есть и существенные издержки. Одна из них заключается в том, что бессмертный вид очень быстро разрастается до исчерпания необходимых ему ресурсов окружающей среды. И тогда он становится уязвимым для таких бедствий, как голод и пандемии, которые могут уничтожить его одним махом, убив всех представителей разом.
Известно, что в прошлом подобные катастрофы случались нередко. В конце концов, 99,9 % всех когда-либо существовавших на Земле видов сейчас отсутствуют. Нынешние оставшиеся – это те немногие, кому удалось выжить на нашей непредсказуемой планете. Как же им удалось?
Бессмертные виды вроде микробов, скорее всего, устояли против катастрофического голода – и пандемий в том числе – за счет клонирования. Это значит, что даже пандемия, уничтожающая 99,9 % популяции, не приведет к вымиранию, поскольку мизерного количества оставшихся хватит, чтобы восстановить численность. А вот у размножающегося половым путем бессмертного вида шансы невелики. По подсчетам одной команды биологов, занимающихся сохранением биоразнообразия, минимальная численность жизнеспособной популяции у большинства животных видов с половым способом размножения составляет около 5000 особей{577}. Другие называют цифры от 500 до 50 000 в зависимости от вида. Любая пандемия (или голод), при которой порог минимальной численности будет перейден, уничтожит размножающийся половым путем вид навсегда{578}.
Согласно адаптационной теории старения, именно это обстоятельство и послужило предпосылкой для развития самоубийственных генов. Сценарий рисуется примерно такой: представьте две конкурирующие группы организмов, размножающихся половым путем. В одной группе все бессмертны. В другой появились самоубийственные гены и какие-то особи постепенно стареют и умирают. Первая группа напоминает густой лес, вторая – регулярно прореживаемый. При возникновении пандемии у первой группы шансов на выживание столько же, сколько у густого леса во время лесного пожара. Вторая, позволившая распространиться самоубийственным генам, выживет с большей долей вероятности.
Разумеется, полностью от угрозы голода и пандемий самоубийственные гены нас не защищают. Но поскольку старость и смерть мало-помалу, как выразился исследователь в области борьбы со старением Джошуа Миттельдорф, прореживают наши ряды, снижается риск вымирания всего вида целиком. Старение и смерть, утверждает Миттельдорф, – это отступные, которые мы платим пандемиям{579}.
И теория Хэмилтона об эволюции полового размножения, и адаптационная теория старения представляют собой разновидности так называемой гипотезы Красной Королевы[20], совершившей переворот в современной биологии. Название – отсылка к эпизоду из «Алисы в Зазеркалье» Льюиса Кэрролла. После бешеного бега вместе с Красной Королевой Алиса в изнеможении падает на землю и обнаруживает, что они с Королевой все там же, где были. «У нас, когда долго бежишь со всех ног, непременно попадешь в другое место», – недоумевает Алиса. «Ну а здесь, знаешь ли, приходится бежать со всех ног, чтобы только остаться на том же месте! Если же хочешь попасть в другое место, тогда нужно бежать по меньшей мере вдвое быстрее!»[21] – объясняет ей Королева.
Какое отношение это имеет к прошлому и будущему наших эпидемий? Как гласит классическая теория естественного отбора, которую сформулировал в 1859 году Чарльз Дарвин и которую учат на уроках биологии во всем мире, патогены и их жертвы со временем приспосабливаются друг к другу, эволюционируя в направлении минимизации трений. Гипотеза Красной Королевы утверждает иное.
В ответ на каждое эволюционное приспособление у одного вида появляется контрприспособление у противника. Иными словами, патогены и их жертвы не эволюционируют в направлении взаимной гармонии, а ведут бесконечную гонку вооружений, напоминая супругов в неудачном браке. Они «долго бегут со всех ног», но «никуда не движутся».
Из этого следует такой же вывод, как из гипотез, касающихся природы микробов и иммунной системы и эволюции полового размножения и смерти. А именно: отношения между патогенами и их жертвами не стремятся к урегулированию. Наоборот, это постоянная битва, в которой каждая сторона изобретает все более хитроумные способы пробить защиту противника.
А значит, эпидемии не обязательно вызываются неудачно сложившимися историческими условиями. Независимо от наличия каналов, самолетов, трущоб и агропромышленных комплексов патогены и их носители все равно были и остаются узниками замкнутого круга эпидемий. Эпидемии – это не исторические аномалии, а естественная особенность жизни в окружении микробов.
Глава 9 - Логика Пандемии
Книга - Пандемия: Всемирная история смертельных вирусов
Автор - Соня Шах
566
Markus G. Weinbauer and Fereidoun Rassoulzadegan, 'Extinction of Microbes: Evidence and Potential Consequences,' Endangered Species Research 3, no. 2 (2007): 205–15; Gerard Tortora, Berdelle Funke, and Christine Case, Microbiology: An Introduction, 10th ed. (San Francisco: Pearson Education, 2010).
567
Kat McGowan, 'How Life Made the Leap from Single Cells to Multicellular Animals,' Wired, Aug. 1, 2014
568
В анализах крови испытуемых, которым предъявлялись изображения людей, чихающих или покрытых оспинами, обнаруживалось на 23,6 % больше интерлейкина-6, чем у тех, кто разглядывал изображения предметов мебели или нацеленного оружия. C. L. Fincher and R. Thornhill, 'Parasite-Stress Promotes In-Group Assortative Sociality: The Cases of Strong Family Ties and Heightened Religiosity,' Behavioral and Brain Sciences 35, no. 2 (2012): 61–79.
569
Sabra L. Klein and Randy J. Nelson, 'Influence of Social Factors on Immune Function and Reproduction,' Reviews of Reproduction 4, no. 3 (1999): 168–78.
570
Matt Ridley, The Red Queen: Sex and the Evolution of Human Nature (New York: Macmillan, 1994), 80.
571
Michael A. Brockhurst, 'Sex, Death, and the Red Queen,' Science, July 8, 2011.
572
Makoto Takeo et al., 'Wnt Activation in Nail Epithelium Couples Nail Growth to Digit Regeneration,' Nature 499, no. 7457 (2013): 228–32.
573
Joshua Mitteldorf, 'Evolutionary Origins of Aging,' in Gregory M. Fahy et al., eds., The Future of Aging: Pathways to Human Life Extension (Dordrecht: Springer, 2010).
574
Jerome Wodinsky, 'Hormonal Inhibition of Feeding and Death in Octopus: Control by Optic Gland Secretion,' Science 198, no. 4320 (1977): 948–51.
575
Valter D. Longo, Joshua Mitteldorf, and Vladimir P. Skulachev, 'Programmed and Altruistic Ageing,' Nature Reviews Genetics 6, no. 11 (2005): 866–72.
576
Интервью с Джошуа Миттельдорфом, 4 февраля 2015 года.
577
Catherine Clabby, 'A Magic Number? An Australian Team Says It Has Figured Out the Minimum Viable Population for Mammals, Reptiles, Birds, Plants and the Rest,' American Scientist 98 (2010): 24–25.
578
Curtis H. Flather et al., 'Minimum Viable Populations: Is There a 'Magic Number' for Conservation Practitioners?' Trends in Ecology & Evolution 26, no. 6 (2011): 307–16.
579
Согласно адаптационной теории старения, адаптивность самоубийственных генов проявляется на уровне популяции, а не особи. Эволюционные механизмы действия так называемого группового отбора в данном случае точно не установлены. Joshua Mitteldorf and John Pepper, 'Senescence as an Adaptation to Limit the Spread of Disease,' Journal of Theoretical Biology 260, no. 2 (2009): 186–95.