Результаты поиска по запросу «

Stable diffusion скарлет

»

Запрос:
Создатель поста:
Теги (через запятую):



Эрза Скарлет Fairy Tail Anime фэндомы Эльза Скарлет Stable diffusion нейронные сети Anime Ero Anime Unsorted 

Эрза Скарлет,Fairy Tail,Хвост феи, Сказка о хвосте феи, Fairy Tail / Сказка о Хвосте феи,Anime,Аниме,фэндомы,Эльза Скарлет,Stable diffusion,нейронные сети,Anime Ero,Взрослые Няшки,Fairy Tail,Anime,fandoms,Stable diffusion,neural networks,Anime Adult,Anime Unsorted,Anime Unsorted

Развернуть

ModelScope text2video Scarlett Johansson Актеры и Актрисы Знаменитости Спагетти еда нейронные сети Stable diffusion скарлет йохансон реддит 

Тренд по ходу. Селебрити жрёт спагетти.
Развернуть

Flandre Scarlet Touhou Project Anime фэндомы reddizen Anime Artist artist Anime Unsorted 

Flandre Scarlet,Touhou Project,Touhou, Тохо,Anime,Аниме,фэндомы,reddizen,Anime Artist,Аниме арт, Аниме-арт,artist,Flandre Scarlet,Touhou Project,Anime,fandoms,reddizen,Anime Art,artist,Anime Unsorted,Anime Unsorted

Развернуть
Комментарии 4 18.10.202204:17 ссылка 62.1

пидоры помогите нейронные сети Stable diffusion 

Требуется помощь со Stable Diffusion

Проблема такая: имеется видеокарта amd rx6750, а нейросетки больше любят Nvidea, искал аналоги на амд, пока использую SD WebUI DML Neuro, но у неё нет возможности использования LoRa.
Во время поисков нашёл вот такой вариант на DirectML https://github.com/lshqqytiger/stable-diffusion-webui-directml

Не запускается, так же просит нвидеа карту

Однако никакие настройки и внесение в аргументы мне не помогли. А использовать через процессор мне не хочется, слишком долго создает картинку.

Питон 3.10 и гит установлены. Брал информацию так же отсюда https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs 

Я плохо в таких делах разбираюсь, так что решение проблемы найти не смог. Взываю к тем кто более умён в данном вопросе

ИСПОЛЬЗОВАТЬ ТОЛЬКО В СЛУЧАЕ КРАЙНЕЙ НЕОБХОДИМОСТИ,пидоры помогите,реактор помоги,нейронные сети,Stable diffusion
Развернуть

Stable diffusion нейронные сети гайд ControlNet automatic1111 

Правильная установка ControlNet в SD webui

Хочу поделиться с вами моим постом с github и reddit.

Я потратил много времени на поиск и решение проблемы с ошибками при установке ControlNet, десятки раз переустанавливал webui и перечитал море информации на github. Пока что данный способ самый рабочий из всех и позволяет обойти ошибки установки mediapipe, OSError и permissions при установке ControlNet.

Сперва я рекомендую сделать чистую установку SD webui, но если такой возможности нет, то удалите расширение controlnet в папке extensions и удалите папку venv, после чего запустите webui-user.bat, дождитесь пока webui восстановит удалённые папки и загрузит все файлы, затем закройте webui.

Перейдите в папку с SD webui, щелкните на строку с директориями и введите "cmd", нажмите enter.

stable-diffusion-webui	X +
<-	^ G Щ
@ Создать '	LO ГО ® Й 0 I'l' Сортировать v = П|
i
f
> 4
6
I
A
Имя	Дата изменения	Тип
•git	29.03.2024 22:37	Папка с файлами
.github	29.03.2024 22:37	Папка с файлами
_pycache_	29.03.2024 22:56	Папка с файлами
config_states	29.03.2024 22:56	Папка с

Откроется командная строка и вы увидите путь к вашей папке с webui.

Теперь вам нужно поочередно вводить эти команды, терпеливо дожидаясь завершения всех операций (я выделил команды жирным текстом):

F:\stable-diffusion-webui>venv\scripts\activate.bat

(venv) F:\stable-diffusion-webui>pip install mediapipe

(venv) F:\stable-diffusion-webui>pip install svglib

(venv) F:\stable-diffusion-webui>pip install fvcore

(venv) F:\stable-diffusion-webui>pip install "opencv-python>=4.8.0"

(venv) F:\stable-diffusion-webui>pip install https://github.com/Gourieff/Assets/raw/main/Insightface/insightface-0.7.3-cp310-cp310-win_amd64.whl --prefer-binary

(venv) F:\stable-diffusion-webui>deactivate

Готово. Теперь запустите файл webui-user.bat и установите/переустановите расширение controlnet. Сообщения об ошибках больше не должны появляться и расширение будет работать нормально. Если и появятся какие-то ошибки, то можете их игнорировать либо написать в комментариях, я попробую разобраться.
Развернуть

нейронные сети Stable diffusion длиннопост 

Stable Diffusion 3 теперь доступна для скачивания и запуска локально

нейронные сети,Stable diffusion,длиннопост

Генерация по промту: Epic anime artwork of a wizard atop a mountain at night casting a cosmic spell into the dark sky that says "Stable Diffusion 3" made out of colorful energy

Теперь модель можно скачать и запустить локально (пока только Medium-версию). Разработчики пишут, что новая модель лучше понимает текст промта, более реалистичная в плане рук и лиц. А так же лучше запоминает детали на даже на небольших дата сетах. Одна из интересных фитч - генерация надписей.

Еще пишут что она "идеально подходит для работы на стандартных потребительских графических процессорах без снижения производительности". Но тут бы я поспорил, легко переварить 10Gb не каждая видеокарта сможет. На моей машине работает медленнее по сравнению с SDXL.

Скачать саму модель можно с civitai или huggingface. Запустить на данный момент только в comfyui.

Немного погонял локально, промты действительно понимает хорошо. Но модель "недообучена" - качество оставляет желать лучшего. Предыдущие версии тоже от этого страдали, но люди из комьюнити допиливали до вполне не плохих результатов.

Несколько примеров на модели SD3 Medium Incl Clips T5XXLFP8

Сложный промт с положением объектов на картинке указанием цветов (у прошлых моделей возникали проблемы):

Three bottles on a table in a kitchen. Bottles that look like cola. Left bottle is full of blue liquid with the number 1 on it. Middle bottle is full of white liquid with the number 2 on it. Right bottle is full of red liquid with the number 3 on it.

нейронные сети,Stable diffusion,длиннопост

Видно, что модель четко следует промту. Круто!

Попробуем с людьми: 

Forest in the background. Dark theme, sunset, look at at viewer, captured in the late afternoon sunlight. Photo of three 21 year old woman. Left woman is blonde with the number 1 on blue T-shirt. Middle woman is redhead with the number 2 on white T-shirt. Right woman is brown hair with the number 3 on red T-shirt. Wearing shorts

 ' 'Л <*щ: tC Y\ ^ МЦ , ,%f- > / « »®V .}?^■ ' . V » ‘ Y «Л • , г ‘У»7 f\ J¡«V >^|<1Л*П'*01Я^1^^^^Ея1. ájí&jrf * ?&"-Z1QH ¡г а*. "• a^2|^B|Uг> * * ¿jp v .уФ*ы г*Ьп|^НРЦН^&. . "J ль*,нейронные сети,Stable diffusion,длиннопост

Тут пришлось сначала описать лес на фоне, потому что иначе он выглядел как будто прифотошопленным. В остальном модель четко соблюдает номера, цвет футболок и волос. Раньше, без танцев с бубном, четко прописать нескольких разных типажей на одной картинке было почти не реально - детали сливались и получались клоны. А в новой версии достаточно просто описания. 

А что по надписям на картинке? Попробуем:

Neon sign with the text "Ты пидор"

нейронные сети,Stable diffusion,длиннопост

Видимо, русскую кодировку не завезли, но видно что модель старается, попробуем иначе:

Neon sign with the text "You are awesome!"

нейронные сети,Stable diffusion,длиннопост

Попробуем сгенерить котика:

A black cat walking along a street paved with stone.Close-up of a cat's face.

нейронные сети,Stable diffusion,длиннопост

Опять неплохо, хотя пришлось реролить несколько раз, что бы получить более-менее нормальный результат. Модель знает основы анатомии кота, но иногда больше похоже на детский рисунок.

Как на счет аниме?

Illustration anime, cartoon. 1woman, blue eyes, brown hair, dynamic angle, centered, full body photo. Street in the background

нейронные сети,Stable diffusion,длиннопост

Опять пришлось реролить несколько раз. Заметил, что если указывать больше деталей, картинка получается лучше.

Попробуем городской пейзаж:

Urban photography: houses, trees, cars, and peoples. the road goes from the bottom left to the right

PM л «с* l4^:v:v^ >.:;->r^ t^jgr jP, jBgf ж ■ W5p дОДЙ'^с^ «. ЩМч к VT'^Г ‘ 1 т :’•кйк№т1^^и » \ 1 «!* *. j|, ЛД ^ ; >,нейронные сети,Stable diffusion,длиннопост

Осторожно: если долго рассматривать картинку, можно подумать что у тебя инсульт...

Что мы имеем на данный момент? Пока реализм хромает... Не всегда с первого раза выходит что нужно. Лично я ожидал большего. Все те же проблемы с руками и склонностью к "плоскости" перспективы и объектов. 

Но есть ощущение, что модель действительно лучше понимает что от нее хотят. Будем надеется, что дообучение будет по силам сообществу, и мы увидим NSFW версию от авторов Juggernaut или Pony Diffusion.

ЗЫ: надеюсь теги эротики и аниме не нужны.

Развернуть

нейронные сети гайд Stable diffusion раздетые нейросеткой 

Как отредактировать любой рисунок с помощью нейросети Stable Diffusion. Подробный гайд

Будем считать, что вы уже установили и настроили Automatic1111's Stable Diffusion web-gui, а также скачали расширение для ControlNet'a и модели для него. Нам нужно будет лишь controlNet Inpaint и controlNet Lineart.

В интернете уже есть гайд по установке. И не один. Да хоть на том же YouTube.

Будем учиться редактировать на примере вот этой картинки:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Автор - Chaesu

Первым делом открываем фотошоп. Да, прежде чем загружать изображение в SD, его нужно подготовить. Проблема тут такая: SD 1.5 модели не могут нормально работать с изображениями больше 800 пикселей. Поэтому, выделяем в фотошопе вот такую область размером 600x900:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Не снимайте выделение сразу, оно ещё пригодится

Выделение есть, теперь Ctrl+C и вставляем скопированный кусок во вкладку txt2img в окошко ControlNet'а (в первые три, то есть вставляем три раза):

ControlNet vl.1.440 3 units ▼ ControlNet Unit 0 ControlNet Unit 1 ControlNet Unit 2 ControlNet Unit 3 Single Image Batch Multi-Inputs Set the preprocessor to [invert] If your image has white background and black lines. Q и ^ ^ Q Enable Low VRAM Pixel Perfect,нейронные сети,гайд,Stable

Вы ведь не забыли увеличить количество юнитов контролнета в настройках?

Теперь настраиваем сами юниты контролнета:
Unit 0:

Preprocessor reference_only Control Weight 0,95 Starting Control Step o,22 Ending Control Step Style Fidelity (only for "Balanced" mode) Control Mode Balanced My prompt is more important Q ControlNet is more important,нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Первый юнит будет отвечать за перенос стиля

Unit 1:

Preprocessor Model inpaint_only+lama - u controlnetllModelsJnpaint [be8bc0e< ▼ Control Weight 1 Starting Control Step o Ending Control Step i Control Mode Balanced Q My prompt is more important ControlNet is more important □,нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Второй отвечает за редактирование с сохранением контекста

Unit 2:

Preprocessor Model lineart_realistic - u controlnetllModelsJineart [5c23bl7d Control Weight 0,8 Starting Control Step o Ending Control Step Preprocessor Resolution Control Mode O Balanced My prompt is more important ControlNet is more important - 0 0,8 600,нейронные сети,гайд,Stable

Ну и третий юнит для контроля генерации

После этого нажимайте на кнопку предпросмотра:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

И скачивайте получившийся "негатив"

Single Image Batch Multi-Inputs,нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Можно поиграться с другими препроцессорами, но lineart_realistic обычно выдаёт лучший результат

Смело открываем его в фотошопе (в новой вкладке, старую пока не трогаем) и начинаем редактировать. Надо лишь убрать всё лишнее и обозначить контур того, что хотим получить. Вот как-то так:

Контролирующий лайн готов. Теперь очищаем ControlNet Lineart и вставляем наш "линейный рисунок". Так как на вход теперь на вход контролнету сам лайн, то нам не нужен препроцессор - ставим его на none.

Single Image Batch Multi-Inputs 0 Image (' /' ff l [/ / '! " Y Y i y /\. / 1 Start drawing ’i VJ 1 , У / \ L i • i xx • ! 1 Set the preprocessor to [invert] If your image has white background and black lines. D а ^ Q Enable Allow Preview Control Type Low VRAM Pixel Perfect Mask

Это всё ещё Unit 2

Осталось только нарисовать маску inpaint'а. Переходим в ControlNet Inpaint (Unit 1) и прямо тут в веб-интерфейсе закрашиваем те части, которые хотим перерисовать:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Про тень от одежды не забудьте

Осталось лишь написать промпт (и негативный промпт), выбрать параметры генерации (размер 600x900 не забывайте) и нажимать Generate до тех пор, пока не увидите приемлемый результат.
Например:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Главное что стиль далеко не уехал

Это изображение неплохо бы отправить в img2img inpaint, чтобы поправить мелкие недоработки, но сейчас просто копируем его в буфер, возвращаемся в фотошоп и вставляем в нужное место (выделение пригодилось).

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Сидит как влитая

Исправляется тем же образом:

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Приемлемо

По тому же принципу делаем остальных

нейронные сети,гайд,Stable diffusion,раздетые нейросеткой

Видите недоработки? Исправить их - это ваше домашнее задание

А вот параметры генерации:

(best quality, masterpiece:1.2), 1girl, short hair, (white bikini:1.1), standing, cowboy shot, white background, contrapposto,
Negative prompt: (worst quality, low quality, normal quality:1.3)
Steps: 28, Sampler: DPM++ 2M SDE Karras, CFG scale: 6, Seed: 2598121264, Size: 600x900, Model hash: 3867bda67e, Model: kizukiAlternative_v10, VAE hash: 2125bad8d3, VAE: kl-f8-anime2.ckpt, Clip skip: 2,

ControlNet 0: "Module: reference_only, Model: None, Weight: 0.95, Resize Mode: Crop and Resize, Low Vram: False, Threshold A: 0.5, Guidance Start: 0.22, Guidance End: 1, Pixel Perfect: False, Control Mode: ControlNet is more important, Hr Option: Both, Save Detected Map: True",

ControlNet 1: "Module: inpaint_only+lama, Model: controlnet11Models_inpaint [be8bc0ed], Weight: 1, Resize Mode: Crop and Resize, Low Vram: False, Guidance Start: 0, Guidance End: 1, Pixel Perfect: False, Control Mode: My prompt is more important, Hr Option: Both, Save Detected Map: True",

ControlNet 2: "Module: none, Model: controlnet11Models_lineart [5c23b17d], Weight: 0.8, Resize Mode: Crop and Resize, Low Vram: False, Guidance Start: 0, Guidance End: 0.8, Pixel Perfect: False, Control Mode: Balanced, Hr Option: Both, Save Detected Map: True", Version: v1.7.0

Модель для генерации логично выбирать близкую по стилю. Для не слишком реалистичных рисунков Kizuki Alternative почти идеальна.

Несколько советов:

- Уменьшайте исходное изображение заранее, облегчайте нейросети работу.

- Можно обойтись из без Lineart'а, и тогда сетка додумает форму самостоятельно.

- Если какие-то части получились хорошо, а какие-то нет, то просто перенесите результат во вкладки Reference и Inpaint и работайте уже с ним.

- Если исходное изображение слишком тёмное либо светлое, то модель сама по себе может не справиться и имеет смысл подключать затемняющую или осветляющую мини-модель (лору).

Развернуть

нейронные сети гайд туториал StableDiffusion песочница 

Как перерисовать/раздеть любого персонажа с помощью Stable Diffusion

нейронные сети,гайд,туториал,StableDiffusion,песочница

Сегодня я расскажу о способе дорисовывать любые рисунки с помощью инструментов Stable Diffusion. Но прежде чем я начну, убедитесь что у вас установлена свежая версия Stable Diffusion webui от Automatic1111 + расширение ControlNet 1.1 со всеми нужными моделями.
Вот видео-инструкции (смотреть по порядку):

Установили? Тогда начинаем.

Часть 1. ControlNet Inpaint

Ни для кого не секрет, что в SD существует фича под названием inpaint - это, по сути, способ сгенерировать что-то поверх существующего изображения. В интерфейсе от Automatic1111 под inpaint'ом обычно подразумевают один из режимов img2img. Это хоть и мощный инструмент, но, всё же, недостаточно точный и контролируемый. Тут на помощь приходит ControlNet Inpaint и исправляет главный недостаток "классического" inpaint'а - игнорирование контекста. Впрочем, достаточно теории переходим к практике.

Итак, возьмём изображение, которое мы хотим отредактировать.

И сразу же уменьшаем/увеличиваем его до нужного разрешения:
В моём случае с 1500x1500 до 640x640. По опыту скажу, что лучший результат получается при размере меньшей стороны от 512 до 768 пикселей, а большая сторона при этом желательно меньше 1024 пикселей.

нейронные сети,гайд,туториал,StableDiffusion,песочница

Теперь открываем вкладку txt2img в web-gui, раскрываем ControlNet и переносим изображение на холст Unit 0, выбираем режим Inpaint и выставляем все нужные настройки (и включить не забудьте):

ControlNet Unit 0 ControlNet Unit 1 ControlNet Unit 2 ControlNet Unit3 Single Image Set the preprocessor to (invert] If your image has white background and black lines. D s * -* Q Enable Low VRAM Pixel Perfect CD Allow Preview Control Type All Canny Depth Normal OpenPose MLSD Lineart

Теперь замазываем места, которые хотим перерисовать:

нейронные сети,гайд,туториал,StableDiffusion,песочница

В промпт пишем то, что хотим в результате видеть. Ещё раз, пишем не то, что нужно нового добавить, а то, каким хотим видеть финальную картинку:

1girl, naked, completely nude, (best quality, masterpiece:1.2)

Негативный промпт как обычно:
EasyNegative, badhandv5, (worst quality, low quality, normal quality:1.4)

Модель подбираем поближе к стилю рисунка (реалистичный/стилизованный). В моё случае это MeinaMix_v11-inpaint.

Параметры генерации:

Sampling method DPM++2M SDE Karras Restore faces Tiling Width Sampling steps Hires, fix 640 Batch count n 640 Batch size,нейронные сети,гайд,туториал,StableDiffusion,песочница

Всё, можно нажимать Generate до тех пор пока не появится приемлемая картинка.

Столь хороший результат обеспечивается препроцессором inpaint_only+lama - он пытается дорисовать зону под маской с учётом "наружного контекста". Это же и обеспечивает генерацию правильного цвета.

Простой случай разобрали, переходим к чему-то посложнее:

Часть 2. Style transfer

Возьмём теперь другой рисунок попробуем повторить описанный выше процесс:

6 I I PATREON.COM/CUTESEXYROBUTTS PATREON.COM/CUTESEXYROBUTTS,нейронные сети,гайд,туториал,StableDiffusion,песочница

Мда, мало того, что поза поехала, так ещё и стиль оказался потерян. Одного ControlNet Inpaint тут недостаточно. Надо подключать дополнительные юниты.

Нам нужно решить 2 задачи:

Повторить существующий стиль рисункаСохранить силуэт

Для решения первой задачи будем использовать ControlNet reference и ControlNet T2IA - они оба позволяют копировать стиль с изображения-референса и как нельзя лучше работают в связке.

Возвращаемся к интерфейсу ControlNet'a. Копируем исходное изображение в Unit 1 и Unit 2. Настраиваем вот так:

0 Enable Low VRAM Pixel Perfect Allow Preview Control Type All Canny Depth Normal OpenPose MLSD Lineart SoftEdge Scribble Seg Shuffle Tile Inpaint IP2P О Reference T2IA Preprocessor reference_only И Control Weight i Starting Control о Ending Control 1 Style Fidelity (only for

0 Enable Low VRAM Pixel Perfect Allow Preview Control Type All Canny Depth Normal OpenPose MLSD Lineart SoftEdge Scribble Inpaint IP2P Reference Preprocessor t2ia_style_clipvision Control Weight i Starting Control Seg Shuffle Tile None controlnetT2IAdapter_t2iAdapterColor [c58d: /

(Все нужные модели скачать не забыли?)
А в качестве четвёртого ControlNet'a можно использовать любой, что позволяет сохранить форму: canny, depth, softedge, lineart - на ваше усмотрение и под конкретную задачу.

0 Image,нейронные сети,гайд,туториал,StableDiffusion,песочница

(Вот тут softedge)

Интересный факт: никто не запрещает отредактировать выход предпроцессора в фотошопе. Что-то убрать, что-то подрисовать. Вот где могут понадобиться навыки рисования.

Ладно, всё 4 юнита активны. Нажимаем Generate и:

PATREON.COM/CUTESEXYROBUTTS,нейронные сети,гайд,туториал,StableDiffusion,песочница

Это совсем не то, нужно!
Формы сохранены, но промпт будто проигнорирован. Что случилось? Я вам скажу что: сила ControlNet'а оказалась слишком велика. Stable Diffusion попытался во время генерации воссоздать рисунок-референс да ещё и плюс inpaint там подсунул белый цвет с фона!

Как с этим бороться? Нужно уменьшить эффект двух юнитов переноса стиля (reference и T2IA), но при этом нельзя сильно уменьшать их силу, иначе перенос стиля будет ослаблен. В общем, нужно воспользоваться настройкой Starting Control Step. Она отвечает за то, на какую долю шагов генерации придётся действие ControlNet'a.

Starting Control Step 0.5, например, означает, что первую половину шагов генерация будет опираться только на промпт, а со второй половины подключится уже наш ControlNet.

В общем, план такой: слегка понижаем Control Weight (сила) у стилевых юнитов (примерно до 0.9). После этого начинаем постепенно поднимать границу начала действия стилевых юнитов. Также имеет смысл подобным же образом немного ослабить действие Inpaint'a - позволяет в некоторых случаях исправить цвета.

После нескольких попыток (и усиление промпта) получаем вот такую задницу:

нейронные сети,гайд,туториал,StableDiffusion,песочница

Не идеально, но уже шаг в нужном направлении. На самом деле, сейчас можно (и нужно) уже именно это изображение сделать референсом. Другими словами, скопировать его во все 4 юнита и отталкиваться уже от него. И так сколько нужно раз. Пока не получится идеальный результат, либо ваша генерация окончательно не развалится.

Часть 3. img2img

Даже после получения хорошей генерации во вкладке txt2img имеет смысл несколько отшлифовать изображение уже через img2img inpaint. Главное не забудьте подключить 2 ControlNet'a для переноса стиля. Помните да, reference и T2IA.

Некоторые пункты в виде итога:

Ключ ко всему - это ControlNet (inpaint_only+lama) и ControlNet (reference_only, T2IA)
Генерацию лучше проводить поэтапно, чтобы было на что опереться в последующие шаги
Также имеет смысл разделять генерацию объектов нужной формы и затем покраску их в нужные цвета.
Подбирайте подходящие под задачу модели и/или лоры.
Не забудьте про параметры Control Weight, Starting Control Step, Ending Control Step. И про Control Mode в самом низу!

P.S. Хотел бы я чтобы кто-то обстоятельно протестировал этот метод и поделился бы потом результатами. Мне кажется, как-то можно добиться ещё большей близости к стилю оригинала, ведь задача состояла именно в этом.

Туториал закончен, теперь впечатления. Это охиренно мощная штука! Можно как угодно дорисовать любую картину, стиль вообще не важен, тем более что сейчас уже натренированы сотни моделей на все случаи жизни. Хоть скриншоты из мультфильмов/аниме, хоть картины маслом. Фильмы и фотографии вообще пройденный этап. Можно даже без использования inpaint'a просто сгенерировать сколько хочешь изображений с нуля, просто опираясь на единственный рисунок. А ведь ControlNet появился лишь в начале этого года. Короче, уже почти год прошёл, а всё это до сих пор кажется каким-то колдунством. Что грядущий день готовит...

Развернуть

Отличный комментарий!

а говорили что нейросети работу заберут
судя по этому туториалу теперь нужен Senior Stable Diffusion Manager чтобы только на жопу посмотреть )
imhosep imhosep01.08.202320:32ссылка
+32.6

StableDiffusion нейронные сети арт барышня art 

Stable Diffusion 3.5

Пощупать онлайн и без регистрации, но с ограничением по процессорному времени, а так же скачать:

https://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-large

https://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-large-turbo

"Сегодня мы выпускаем Stable Diffusion 3.5, наши самые мощные модели.

Stable Diffusion 3.5 Large: Эта базовая модель с 8 миллиардами параметров, превосходным качеством и оперативным соблюдением требований является самой мощной в семействе Stable Diffusion.

Stable Diffusion 3.5 Large Turbo: Усовершенствованная версия Stable Diffusion 3.5 Large генерирует высококачественные изображения с исключительной оперативностью всего за 4 шага, что значительно быстрее, чем Stable Diffusion 3.5 Large.

Stable Diffusion 3.5 Medium (будет выпущен 29 октября): Эта модель с 2,5 миллиардами параметров, улучшенной архитектурой MMDiT-X и методами обучения предназначена для работы «из коробки» на потребительском оборудовании, обеспечивая баланс между качеством и простотой настройки. Она способна генерировать изображения с разрешением от 0,25 до 2 мегапикселей."

Развернуть

Stable diffusion нейронные сети сделал сам песочница 

Моя попытка в тренировку LoRA

В общем, балуюсь я нейросетями уже второй годик. Начиналось все для генережки портретиков для ДнД и картинок с природой. Но недавно стал выкладывать еще и посты с цветными конями на CivitAI, дабы нафармить местной валюты на обучение и как-то увлекся. Но потом вспомнил для чего это я все затеял и решил посмотреть что я смогу. В итоге смог не очень, но тем не менее, почему бы не поделиться с уважаемыми содомитами результатами, тем паче, что обучал не на ссанине по желтому снегу, а по самому Оглафу. Получилось не то что бы плохо, но и не хорошо. Хотя, если уменьшать получаемый результат до размеров кадров оригинального комикса, то вроде даже похоже. В общем судите сами, что за срака вышла...

https://civitai.com/models/473780/oglafstyle?modelVersionId=526996

P.S: Если у кого есть положительный опыт тренировки LoRA на CivitAI - поделитесь опытом. Хочеться делать так, что бы не стыдно было.

P.P.S: Пощу на реакторе я, мягко говоря, не часто, так что если где-то что-то налажал в оформлении и/или тегах, прошу сообщить, что бы я поправил, а уже потом кидайте фекальными массами.

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

 V fei,Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Stable diffusion,нейронные сети,сделал сам,нарисовал сам, сфоткал сам, написал сам, придумал сам, перевел сам,песочница

Развернуть
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме Stable diffusion скарлет (+1000 картинок)