erika bell
»Rem (Re Zero) Ryuuko Matoi Kill la Kill Saber (Fate) Bishoujo Senshi Sailor Moon Shinobu Oshino Monogatari (Series) Misaka Mikoto Этти Anime Unsorted Angel beats Naruto To love ru ToAru Anime Fate (series) Tengen Toppa Gurren Lagann No Game No Life Mahouka Koukou no Rettousei Black Lagoon Highschool of the Dead Sword Art Online Re Zero Kara Hajimeru Isekai Seikatsu Code Geass Danmachi usa Hataraku Maou-Sama! Kaichou-wa Maid-sama! athena glory Satsuki Momoi Chiba Erika Bokura wa Minna Kawaisou momo Baka to Test to Shoukanjuu Stephanie Dola Hai to Gensou no Grimgar Kuroko no Basuke Jormungand Full Metal Panic Saeko Busujima больше тегов богу тегов Your Lie in April Jibril Tachibana Kanade clannad Yuru Yuri sailor mars Owari no Seraph Momo Velia Deviluke Revy Toradora Shokugeki no Soma Prison School OreImo Hestia (Danmachi) Yoko Littner CC Kurisu Makise Sinon Shingeki no Bahamut Fullmetal Alchemist Ram (Re Zero) Steins Gate Hinata Hyuga Rin Tohsaka Asuna
статья чёрная дыра наука космос песочница Реактор познавательный
Физик зафиксировал излучение Хокинга от аналоговой черной дыры
Черная дыра искажает Большое Магелланово Облако (моделирование)Джефф Штейнхауэр, физик из Израильского технологического института, зафиксировал самый достоверный на сегодняшний день аналог излучения Хокинга. В эксперименте ученый создал так называемую «глухую дыру» — акустический аналог черной дыры. Наблюдая за ее поведением, физик обнаружил, что на специальной границе, за которую не могут распространяться колебания материи «глухой дыры», рождаются пары квантов колебаний, движущихся в разные стороны. Более того, эти пары оказываются квантово-запутанными.
В отличие от предыдущих экспериментов с аналоговыми черными дырами, «запрещенное» излучение в работе Штейнхауэра возникает самопроизвольно и имеет квантовую природу: оно рождается из флуктуаций вакуума, как и излучение Хокинга. По словам Леонарда Сасскинда, если результат получит подтверждение, то он станет «триумфом Хокинга, как открытие бозона Хиггса стало триумфом для Питера Хиггса и его коллег». Исследование опубликовано в журнале Nature Physics, кратко о нем сообщает редакционный материал Nature
Традиционное объяснение природы излучения Хокинга связано с флуктуациями вакуума на горизонте событий черной дыры. Это такая область, в которой гравитационное поле объекта оказывается настолько сильным, что даже свет не может ее покинуть. Природа квантовой механики не позволяет существовать идеальному нулевому вакууму — этому мешает принцип неопределенности Гейзенберга. В результате в вакууме непрерывно рождаются и аннигилируют пары виртуальных частиц. Если одна из частиц такой пары окажется затянутой «под» горизонт, то вторая частица станет реальной и покинет черную дыру. При этом эта пара частиц — внутри и снаружи черной дыры — окажется квантово-запутанной.
Излучение Хокинга ведет к тому, что со временем черная дыра испаряется. Причем, чем меньше сверхплотный объект, тем быстрее это произойдет. С этим связан важный парадокс, указывающий на сложность объединения общей теории относительности и квантовой механики — парадокс потери информации. Подробно о нем рассказывал Эмиль Ахмедов в серии интервью N+1 (1, 2). Однако зафиксировать излучение напрямую, от известных кандидатов в черные дыры, невозможно. Оно подобно тепловому излучению, и чем массивнее звезда, тем меньше температура излучения. Так, для черной дыры с массой Солнца температура излучения Хокинга составляет 0,0000001 кельвина — на 7 порядков меньше, чем заполняющее Вселенную реликтовое излучение.
Поэтому для того, чтобы подтвердить существование излучения Хокинга, ученые используют модельные объекты — аналоговые черные дыры. Физики обратили внимание, что при правильной постановке эксперимента волны звука или других колебаний могут вести себя подобно световым волнам вблизи черной дыры.
В роли аналоговых черных дыр выступали как макро-, так и микроскопические системы. К примеру, в 2008 году физики под руководством Ульфа Леонхардта моделировали волны хокинговского излучения с помощью волн в бассейне, распространявшихся против сильного течения. Тогда ученым удалось зафиксировать следы волн, менявших свою частоту с положительной на отрицательную. Позднее та же группа использовала оптические волокна с нелинейными свойствами для тех же целей.
Автор новой работы, Джефф Штейнхауэр, пошел дальше и применил для моделирования горизонта событий конденсат Бозе-Эйнштейна из охлажденных до сверхнизких температур атомов рубидия. Эксперименты со звуковыми аналогами черных дыр — «глухими дырами» — физик начал еще в 2009 году.
Отличный комментарий!