Как создать реалистичную глубину в рисунке. Основы линейной перспективы (часть 2)
Текст переведен специально для групп Digital Painting Classes и Smirnov School. По материалам ресурса How to sketch. Перевела Валерия Шмырова.
Что, если я скажу вам, что вы можете убедительно показать в рисунке глубину, не имея особого таланта и не тратя $20 000 на художественные школы?
Восприятие глубины в реальном мире — довольно сложная штука. Поскольку у нас два глаза, мы видим окружающее пространство стереоскопически (то есть можем воспринимать форму, размеры и расстояние до предмета). Наше зрение создает иллюзию реальной трехмерности на плоской поверхности — сетчатке глаза. Однако эта иллюзия может быть вполне правдоподобной. Линейная перспектива — вот тот единственный инструмент, который поможет воссоздать ее в рисунке.
Глубина в перспективе основывается на трех вещах:
1.Изменение размеров;
2.Сжатие;
3.Наложение объектов.
Мы начали обсуждать первый и второй пункты в этом посте. Теперь мы применим на практике все три понятия, чтобы в ваших рисунках и набросках стала лучше ощущаться глубина. Верите или нет, но качество рисования на 90% достигается с помощью простых приемов.
Если вам интересно, вы можете почитать об изощренных перспективных сетках и прочем в Википедии или где-нибудь ещё. Я рекомендую вам изучить все существующие теории линейной перспективы, если у вас достаточно времени. Но пока что мы отойдем от классических книжных объяснений и сосредоточимся только на практических вещах. Я настоятельно рекомендую вам выполнять упражнения и применять на практике описываемые методы во время чтения. Это намного ускорит ваш прогресс.
Как мы воспринимаем расстояние
Давайте возьмем несколько прямоугольников и выстроим их в ряд, который уходит вдаль от зрителя.
Все прямоугольники имеют одинаковый размер и расположены впритык друг к другу. По сути, это один и тот же прямоугольник, размноженный в пространстве.
Прямоугольники в пространстве
Как видите, каждый последующий прямоугольник в перспективе становится меньше, хотя в действительности все они имеют одинаковый физический размер. Благодаря этому явлению параллельные линии сходятся на линии горизонта.
Изменение размера — это подсказка, которая помогает нашему мозгу воспринимать глубину. Но оно происходит не линейно. Первый и второй прямоугольники очень существенно отличаются друг от друга. Однако, по мере продвижения к горизонту, разница в размере между соседними прямоугольниками уменьшается. Как вы могли заметить, пропорции прямоугольников тоже меняются. Те, что ближе к горизонту, сильнее сжаты.
Нелинейное изменение размеров
Как вы знаете из предыдущей части, каждый прямоугольник сжимается по своей «нормальной линии», когда его наклоняют относительно зрителя. Теперь вы видите, что плоскость сжимается тем сильнее, чем она ближе к линии горизонта. И если у нас есть последовательность прямоугольников одинакового размера, которая уходит вдаль от зрителя, их размер меняется нелинейно. Разница в размере между парами прямоугольников, лежащих ближе к зрителю, ярче выражена, чем между теми, которые ближе к горизонту.
Давайте рассмотрим феномен глубины под другим углом. Проведём три горизонтальные линии в перспективе. Они удаляются от зрителя так же, как и прямоугольники.
Единственное требование к этим линиям: на бумаге интервалы между ними должны быть одинаковыми.
Каждый последующий сантиметр по направлению к горизонту имеет большую глубину в перспективе
И вот ключевой момент!
Отрезок B в два раза короче, чем A, но C в шесть раз короче, чем B.
Почему это должно нас беспокоить?
Потому что каждый следующий сантиметр на бумаге вмещает в себя все больше и больше пространства по мере приближения к горизонту.
Итак, возникает резонный вопрос:
Как мне отмерить равные расстояния в перспективе? Это подводит нас к следующей главе. Оставайтесь с нами!
Измерение
Вы спросите: «Зачем мне это учить?
Это же только для того, чтобы чертить механизмы?
Нужно ли мне измерять расстояние в пространстве, если я рисую тела?»
Буду говорить за себя. Измерение всегда дает лучший результат, чем если бы я просто прикинул на глаз расстояние в перспективе. Как бы я ни старался.
И да, это очень полезно в том числе при рисовании тел, потому что они существуют в пространстве, как и любой другой объект. Вы должны точно знать, где именно в трехмерном пространстве расположены ключевые точки тела. Вот почему вам нужно освоить измерения в перспективе. А потом вы сможете делать обоснованные догадки, уже не рисуя вспомогательные конструкции.
Диагонали
Как вы помните из уроков геометрии (я не помню), диагонали прямоугольника пересекаются в его центре.
И знаете что?
То же самое происходит и в перспективе.
Именно благодаря этому диагонали помогают нам рисовать одинаковые прямоугольники.
Диагонали прямоугольника пересекаются в его центре
Найдите центр прямоугольника, используя диагонали.
Нарисуйте среднюю линию прямоугольника и продолжите ее в том направлении, куда собираетесь клонировать прямоугольник.
Средняя линия пересечёт сторону прямоугольника в точке А.
Продолжите стороны прямоугольника в том же направлении.
Найдите центр прямоугольника. Продлите линии в ту сторону, куда будете его клонировать. Проведите через точку A линию из дальнего угла прямоугольника. Она пересечет его продлённую сторону в точке B. Точка B отмеряет ширину нового, точно такого же прямоугольника.Проведите вертикальную линию, которая будет представлять собой дальнюю сторону нового прямоугольника. Наш метод удвоения прямоугольника с помощью диагонали работает и в перспективе.
Удвоение прямоугольника Сначала найдите центр прямоугольника, затем размножьте его во всех направлениях.
Клонирование прямоугольника во всех направлениях Заполните всю страницу такими конструкциями.
Следует помнить, что в перспективе центр прямоугольника смещается по отношению к зрителю. Это происходит из-за схождения линий. Когда перспективное искажение небольшое (горизонт далеко по сравнению с размерами объектов), линии сходятся медленно, и центр прямоугольника смещается незначительно.
Смещение центра
И наоборот, смещение центра очень ярко выражено в случае сильного перспективного искажения.
Перенос ортогонального вида в перспективу
Диагонали полезны при построении неправильных форм в перспективе.
Следующее упражнение покажет вам, как это делать.
Нарисуйте квадрат.Проведите произвольную кривую внутри него.Нарисуйте диагонали и средние линии квадрата. Это прямоугольное построение поможет вам перенести кривую в перспективу.
Ортогональный вид (объект расположен прямо перед зрителем, без наклона или смещения в сторону) Используя эллипс, определите, как будет выглядеть квадрат в перспективе.Проведите линию горизонта. Помните, чем она ближе к вашему эллипсу, тем сильнее будет перспективное искажение.
Нарисуйте круг в перспективе
Самый простой способ нарисовать прямоугольник — использовать так называемую одноточечную перспективу, где линии параллельны либо картинной плоскости (тогда они вообще не сходятся), либо лучу зрения. Те, которые параллельны лучу зрения, сходятся в центре линии горизонта. Эта точка называется центральной точкой схода, как вы, возможно, помните.
Постройте квадрат Итак, нарисуйте квадрат в одноточечной перспективе.Проведите диагонали и средние линии. Это ваши ориентиры.Перенесите точки пересечения кривой с этими линиями из вашего первоначального ортографического рисунка. Например, если кривая касается верхней стороны квадрата по центру, она будет делать то же самое и в перспективе.
Определите опорные точки
Соедините точки Проведите кривую через все точки. Можно также попробовать вписать кривую в квадрат, который в полтора раза больше.Нарисуйте несколько кривых в квадрате.Заполните страницу этими построениями.
Построение одинаковых интервалов в перспективе с помощью эллипса
Эта техника основана на том, что диаметр круга не меняется, в каком бы направлении его ни провели. То же самое происходит, когда вы помещаете круг в перспективу. Если две прямые линии внутри эллипса пересекаются в его центре, они будут иметь одинаковую длину.
Круг под прямым углом
Круг в перспективе Итак, нарисуйте эллипс желаемой степени сжатия.Проведите линию горизонта. Чем ближе она к эллипсу, тем сильнее перспективное искажение.Проведите прямую линию через центр эллипса.Постройте в одноточечной перспективе квадрат, в который будет вписан эллипс.Найдите центр, который будет расположен на пересечении диагоналей.Проведите прямую линию через центр.
Постройте круг в перспективе. Проведите линию внутри круга Сдвиньте эллипс так далеко к горизонту, как захотите. Для этого клонируйте несколько раз исходный квадрат.
Перемещение эллипса в перспективе
Вы можете перемещать эллипс по горизонтали, не меняя его размер, потому что в этом случае он движется параллельно картинной плоскости, а значит, степень сжатия остается одинаковой.
Проведите линию через центр круга-клона Проведите прямую линию через центр полученного эллипса. По длине она будет равна исходной линии (просто перенесённой вдаль). Линии должны получиться параллельными, таким образом они будут направлены в одну и ту же точку схода.
Стена из кубов
Постройте куб. Нижняя грань параллельна земле, никаких причудливых наклонов.Начните клонировать любую грань куба с помощью нашего метода диагоналей. Наметьте линии, которые будут направлены в точки схода.
Нарисуйте куб в перспективе
Помните, квадраты сжимаются сильнее по мере удаления от зрителя. Если сравнивать первый и второй квадраты, этот эффект выражен ярко. Для каждого последующего квадрата он менее очевиден, но присутствует всегда.
Постройте новые кубы, клонируя квадратные плоскости Нарисуйте кубы один за другим. Вы можете клонировать их столько раз, сколько понадобится, чтобы заполнить всю страницу стеной кубов.
Вы, возможно, недооцениваете рисование кубов.
Но это чрезвычайно важный навык, который нужно освоить, прежде чем переходить к рисованию всяких безумных вещей, порождённых вашим воображением.
Это вам очень поможет, я обещаю.
Сквозное построение
До сих пор мы рисовали только видимые грани наших кубов.
Пора усложнить вашу жизнь.
Как?
С помощью сквозного построения.
Зачем?
Это эффективный метод рисования объектов «из головы».
«Сквозное построение» означает, что вы рисуете твердые тела так, будто они сделаны из стекла. Так вы всегда будете знать, где именно в пространстве находятся те участки поверхности тела, которые недоступны глазу.
Соответственно, вы сможете правильно располагать тела по отношению друг к другу.
А теперь настало время для практического задания.
Нарисуйте куб, который стоит на земле, — все то же самое. Но теперь нарисуйте и его невидимые рёбра тоже.
Нарисуйте куб в перспективе Клонируйте куб по направлению к правой точке схода. Оставьте между двумя кубами пустое пространство размером с такой же куб.
Клонируете куб в сторону правой точки схода. Оставьте посередине пространство величиной с такой же куб Теперь клонируйте куб в сторону левой точки схода. И снова оставьте между ними расстояние, куда мог бы поместиться третий куб.
Клонируйте куб по направлению к левой точке схода Заполните всю страницу такими построениями, меняя ракурс и степень перспективного искажения.
Надеюсь, вы следуете моим инструкциям.
Я не могу проконтролировать, делаете ли вы эти упражнения.
Я всего лишь подчеркиваю, что они важны, если вы хотите рисовать лучше.
Вот вам еще одно явление, связанное с этими тремя кубами. Как вы могли заметить, уходя вдаль, некоторые плоскости сильнее сжимаются (мы уже знаем почему), а другие — наоборот, больше открываются зрителю.
Это происходит потому, что угол между лучом зрения и поверхностью этих плоскостей приближается к прямому (90 градусов).
Перемещаясь в пространстве, плоскость сильнее сжимается или сильнее открывается зрителю
Угол между лучом зрения и поверхностью
Построения на основе масс
Масса — это простое сферическое или колбасоподобное тело, используемое в качестве основы для построения сложных форм.
Думайте о ней как о комке глины, существующем в трехмерном пространстве.
Я подчеркиваю, это не плоская фигура на бумаге, у нее есть реальный физический объем.
Масса — это простое сферическое или колбасоподобное тело
Зачем нам это?
Вам легче будет воссоздать чувство размера в рисунке, используя массы.
Одновременно вы решите проблемы наложения объектов и перспективного искажения. Как видите, метод масс работает со всеми тремя ключевыми компонентами глубины в вашем рисунке.
Давайте теперь создадим куб из сферической массы. Независимо от того, как он развернут, куб идеально вписывается в сферу.
Куб, вписанный в сферу Нарисуйте круг.Постройте куб, используя знания, усвоенные из предыдущей статьи. Разворачивайте его как хотите, просто попробуйте соотнесите друг с другом его рёбра внутри массы.Прямо сейчас нарисуйте целую страницу кубов, вписанных в сферы. Меняйте размер и ракурс.
Основная идея, которую нужно держать в голове, размещая массы в пространстве, состоит в том, что каждая масса имеет центр. Центр сферической (или яйцеобразной) массы всегда совпадает с ее геометрическим центром. Давайте построим несколько одинаковых по размеру масс с равными промежутками между ними, используя эти знания.
Постройте квадраты в перспективе
Постройте ряд одинаковых прямоугольников. Поставьте точку в центре каждой горизонтально расположенной стороны. Эти точки и будут центрами сферических масс.
Постройте сферические массы с равными расстояниями между центрами
Теперь нарисуйте сферу вокруг каждой точки. Контур каждой сферы должен касаться линий, которые направлены в центральную точку схода, — если вы хотите, чтобы сферы были одинакового размера.
Впишите куб в каждую сферу Нарисуйте кубы внутри сферических масс. Разворачивайте их, как хотите, они всё равно будут одного размера, и расстояния между их центрами будут одинаковыми.
Теперь давайте нарисуем кубы с заданным расстоянием между центрами. Потом мы поднимем наши кубы на заданную высоту от земли.
Нарисуйте на земле квадрат.Проведите внутри него прямую линию. Эта линия представляет собой расстояние между двумя кубами.Обозначьте точку схода, в которую направлена линия.
Проведите прямую линию внутри квадрата Постройте вертикальную плоскость от исходной прямой. Верхние углы этой плоскости будут центральными точками наших масс.
Постройте вертикальную плоскость Нарисуйте первую сферу. Проведите линию к точке схода так, чтобы она касалась контура сферы. Эта же линия должна касаться и контура второй сферы.
Нарисуйте массы одинакового размера с центрами в верхних углах плоскости Впишите куб в каждую массу. Можете разворачивать их, как захотите.
Впишите куб в каждую массу
Кубы в пространстве на произвольной траектории
Теперь мы объединим упражнения.
Наша цель состоит в том, чтобы построить кубы одинакового размера с одинаковыми расстояниями между ними, но расположенные на неправильной траектории.
Проведите кривую в перспективе.
Проведите кривую внутри прямоугольника в перспективе Отметьте на кривой точки, соблюдая равные интервалы между ними. Каждая точка соответствует центру массы.
Отметьте на кривой точки с равными интервалами
Расстояние между точками можете прикинуть на глаз или определить методом эллипсов.
Очертите сферу вокруг ближайшей точки.
Нарисуйте массы одинакового размера. Точки на кривой — это их центры Определите размеры масс, которые находятся далеко от зрителя. Тогда вам будет легче определить на глаз размеры масс, расположенных в промежутках.
Вот как это нужно сделать: проведите прямую, проходящую через две точки, и продолжайте её, пока она не пересечётся с горизонтом в точке схода. Линии, по которым мы будем выравнивать размер масс (они касаются контуров обеих сфер), тоже должны быть направлены в эту точку схода.
Заполните всю длину кривой такими сферами.
Впишите куб в каждую массу
Теперь можно начинать рисовать внутри масс кубы. Поворачивайте их как хотите.
Серия статей о кубах может показаться скучной, я знаю. Следующая глава будет более захватывающей.
Мы раскроем многоцелевой принцип рисования любого возможного тела.
Отличный комментарий!